Measurable diagonalization of positive definite matrices

被引:3
作者
Quintana, Yamilet [1 ]
Rodriguez, Jose M. [2 ]
机构
[1] Univ Simon Bolivar, Dept Matemat Puras & Aplicadas, Caracas 1080A, Venezuela
[2] Univ Carlos III Madrid, Dept Matemat, Madrid, Spain
关键词
Measurable diagonalization; Positive definite matrices; Asymptotic; Sobolev orthogonal polynomials; Extremal polynomials; Weighted Sobolev spaces; WEIGHTED SOBOLEV SPACES; EXTREMAL POLYNOMIALS; ZERO LOCATION; RESPECT;
D O I
10.1016/j.jat.2014.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that any positive definite matrix V with measurable entries can be written as V = U Lambda U*, where the matrix Lambda is diagonal, the matrix U is unitary, and the entries of U and Lambda are measurable functions (U* denotes the transpose conjugate of U). This result allows to obtain results about the zero location and asymptotic behavior of extremal polynomials with respect to a generalized non-diagonal Sobolev norm in which products of derivatives of different order appear. The orthogonal polynomials with respect to this Sobolev norm are a particular case of those extremal polynomials. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 18 条
[1]   Weighted Sobolev spaces on curves [J].
Alvarez, V ;
Pestana, D ;
Rodríguez, JM ;
Romera, E .
JOURNAL OF APPROXIMATION THEORY, 2002, 119 (01) :41-85
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 2000, Introduction to Approximation Theory
[4]   Muckenhoupt inequality with three measures and applications to Sobolev orthogonal polynomials [J].
Colorado, E. ;
Pestana, D. ;
Rodriguez, J. M. ;
Romera, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) :369-386
[5]  
Dunford N., 1967, SELF ADJOINT OPERATO
[6]   The L-p space of a positive definite matrix of measures and density of matrix polynomials in L-1 [J].
Duran, AJ ;
LopezRodriguez, P .
JOURNAL OF APPROXIMATION THEORY, 1997, 90 (02) :299-318
[7]   Asymptotic of extremal polynomials in the complex plane [J].
Lagomasino, GL ;
Izquierdo, IP ;
Cabrera, HP .
JOURNAL OF APPROXIMATION THEORY, 2005, 137 (02) :226-237
[8]   Zero location and nth root asymptotics of Sobolev orthogonal polynomials [J].
Lagomasino, GL ;
Cabrera, HP .
JOURNAL OF APPROXIMATION THEORY, 1999, 99 (01) :30-43
[9]   Sobolev orthogonal polynomials in the complex plane [J].
Lagomasino, GL ;
Cabrera, HP ;
Izquierdo, IP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) :219-254
[10]  
Portilla A., 2013, J FUNCT SPACE APPL, V2013, P1