Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells

被引:19
作者
Garaba, Shungudzemwoyo P. [1 ]
Acuna-Ruz, Tomas [2 ]
Mattar, Cristian B. [3 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, Marine Sensor Syst Grp, Schleusenstr 1, D-26382 Wilhelmshaven, Germany
[2] Univ Chile, Lab Anal Biosphere LAB, Av Santa Rosa 11315, Santiago, Chile
[3] Univ Aysen, Lab Geosci Geolab, Obispo Vielmo 62, Coyhaique, Chile
关键词
MARINE DEBRIS; EMISSIVITY; SHORTWAVE; FEATURES;
D O I
10.5194/essd-12-2665-2020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Remote sensing of litter is foreseen to become an important source of additional information relevant to scientific awareness about plastic pollution. Here, we document directional hemispherical reflectance measurements of anthropogenic and natural materials gathered along the shorelines of the Chiloe Archipelago, Chile. These spectral observations were completed in a Chilean laboratory using a state-of-the-art hyperspectral HyLogger-3 (TM) thermal infrared (TIR) spectrometer starting from the medium-wave infrared spectrum (6 mu m) and going to the longwave infrared (14.5 mu m) spectrum at 0.025 mu m intervals. The samples we investigated included sands, shells, algae, nautical ropes, Styrofoam (R), gunny sacks and several fragments of plastic-based items. The apparent visible colours of these samples included shades of black, blue, brown, green, orange, white and yellow. We grouped the samples using robust statistical approaches (derivatives, peak-seeking technique) and visual analyses of the derived hyperspectral reflectances. In each group we derived an average or TIR end-member signal and determined diagnostic wavebands. Most of the diagnostic wavebands picked were found to be inside the atmospheric window of the TIR spectrum region. Furthermore, this laboratory reference dataset and findings might become useful in related field observations using similar thermal infrared technologies, especially in identifying anomalies resulting from environmental and meteorological perturbations. Validation and verification of proposed diagnostic wavebands would be part of a continuing effort to advance TIR remote sensing knowledge as well as support robust detection algorithm development to potentially distinguish plastics in litter throughout the natural environments.
引用
收藏
页码:2665 / 2678
页数:14
相关论文
共 39 条
[31]  
Salisbury J.W., 1987, USGS OPEN-FILE REP, P390
[32]   THERMAL INFRARED REMOTE-SENSING OF CRUDE-OIL SLICKS [J].
SALISBURY, JW ;
DARIA, DM ;
SABINS, FF .
REMOTE SENSING OF ENVIRONMENT, 1993, 45 (02) :225-231
[33]   HyLogger-3, a visible to shortwave and thermal infrared reflectance spectrometer system for drill core logging: functional description [J].
Schodlok, M. C. ;
Whitbourn, L. ;
Huntington, J. ;
Mason, P. ;
Green, A. ;
Berman, M. ;
Coward, D. ;
Connor, P. ;
Wright, W. ;
Jolivet, M. ;
Martinez, R. .
AUSTRALIAN JOURNAL OF EARTH SCIENCES, 2016, 63 (08) :929-940
[34]   Soil emissivity and reflectance spectra measurements [J].
Sobrino, Jose A. ;
Mattar, Cristian ;
Pardo, Pablo ;
Jimenez-Munoz, Juan C. ;
Hook, Simon J. ;
Baldridge, Alice ;
Ibanez, Rafael .
APPLIED OPTICS, 2009, 48 (19) :3664-3670
[35]   Anthropogenic marine debris in the coastal environment: A multi-year comparison between coastal waters and local shores [J].
Thiel, M. ;
Hinojosa, I. A. ;
Miranda, L. ;
Pantoja, J. F. ;
Rivadeneira, M. M. ;
Vasquez, N. .
MARINE POLLUTION BULLETIN, 2013, 71 (1-2) :307-316
[36]  
Thomas M., 2017, MSFD GES TG MARINE L, DOI [10.2788/690366, DOI 10.2788/690366]
[37]   Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018) [J].
Topouzelis, Konstantinos ;
Papakonstantinou, Apostolos ;
Garaba, Shungudzemwoyo P. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 79 :175-183
[38]   A country's response to tackling plastic pollution in aquatic ecosystems: The Chilean way [J].
Urbina, M. A. ;
Luna-Jorquera, G. ;
Thiel, M. ;
Acuna-Ruz, T. ;
Amenabar Cristi, M. A. ;
Andrade, C. ;
Ahrendt, C. ;
Castillo, C. ;
Chevallier, A. ;
Cornejo-D'Ottone, M. ;
Correa-Araneda, F. ;
Duarte, C. ;
Fernandez, C. ;
Galban-Malagon, C. ;
Godoy, C. ;
Gonzalez-Aravena, M. ;
Hinojosa, I. A. ;
Jorquera, A. ;
Kiessling, T. ;
Lardies, M. A. ;
Lenzi, J. ;
Mattar, C. ;
Munizaga, M. ;
Olguin-Campillay, N. ;
Perez-Venegas, D. J. ;
Portflitt-Toro, M. ;
Pozo, K. ;
Pulgar, J. ;
Vargas, E. .
AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS, 2021, 31 (02) :420-440
[39]   The physical oceanography of the transport of floating marine debris [J].
van Sebille, Erik ;
Aliani, Stefano ;
Law, Kara Lavender ;
Maximenko, Nikolai ;
Alsina, Jose M. ;
Bagaev, Andrei ;
Bergmann, Melanie ;
Chapron, Bertrand ;
Chubarenko, Irina ;
Cozar, Andres ;
Delandmeter, Philippe ;
Egger, Matthias ;
Fox-Kemper, Baylor ;
Garaba, Shungudzemwoyo P. ;
Goddijn-Murphy, Lonneke ;
Hardesty, Britta Denise ;
Hoffman, Matthew J. ;
Isobe, Atsuhiko ;
Jongedijk, Cleo E. ;
Kaandorp, Mikael L. A. ;
Khatmullina, Liliya ;
Koelmans, Albert A. ;
Kukulka, Tobias ;
Laufkotter, Charlotte ;
Lebreton, Laurent ;
Lobelle, Delphine ;
Maes, Christophe ;
Martinez-Vicente, Victor ;
Maqueda, Miguel Angel Morales ;
Poulain-Zarcos, Marie ;
Rodriguez, Ernesto ;
Ryan, Peter G. ;
Shanks, Alan L. ;
Shim, Won Joon ;
Suaria, Giuseppe ;
Thiel, Martin ;
van den Bremer, Ton S. ;
Wichmann, David .
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (02)