MicroRNA Profiling of Human-Induced Pluripotent Stem Cells

被引:176
|
作者
Wilson, Kitchener D. [1 ,2 ,4 ]
Venkatasubrahmanyam, Shivkumar [3 ]
Jia, Fangjun [1 ,4 ]
Sun, Ning [1 ,4 ]
Butte, Atul J. [3 ,5 ]
Wu, Joseph C. [1 ,4 ]
机构
[1] Stanford Univ, Sch Med, Dept Med, Div Cardiol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Bioengn, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Dept Med Biomed Informat, Stanford, CA 94305 USA
[4] Stanford Univ, Sch Med, Dept Radiol, Stanford, CA 94305 USA
[5] Stanford Univ, Sch Med, Dept Pediat, Stanford, CA 94305 USA
关键词
MOUSE; GENERATION; FIBROBLASTS; EXPRESSION; DIFFERENTIATION; DISCOVERY; MIR-17-92; CIRCUITRY; REVEALS; CLUSTER;
D O I
10.1089/scd.2008.0247
中图分类号
Q813 [细胞工程];
学科分类号
摘要
MicroRNAs (miRNAs) are a newly discovered endogenous class of small noncoding RNAs that play important posttranscriptional regulatory roles by targeting mRNAs for cleavage or translational repression. Accumulating evidence now supports the importance of miRNAs for human embryonic stem cell (hESC) self-renewal, pluripotency, and differentiation. However, with respect to induced pluripotent stem cells (iPSC), in which embryonic-like cells are reprogrammed from adult cells using defined factors, the role of miRNAs during reprogramming has not been well-characterized. Determining the miRNAs that are associated with reprogramming should yield significant insight into the specific miRNA expression patterns that are required for pluripotency. To address this lack of knowledge, we use miRNA microarrays to compare the "microRNA-omes" of human iPSCs, hESCs, and fetal fibroblasts. We confirm the presence of a signature group of miRNAs that is up-regulated in both iPSCs and hESCs, such as the miR-302 and 17-92 clusters. We also highlight differences between the two pluripotent cell types, as in expression of the miR-371/372/373 cluster. In addition to histone modifications, promoter methylation, transcription factors, and other regulatory control elements, we believe these miRNA signatures of pluripotent cells likely represent another layer of regulatory control over cell fate decisions, and should prove important for the cellular reprogramming field.
引用
收藏
页码:749 / 757
页数:9
相关论文
共 50 条
  • [1] Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery
    Hadzimustafic, Nina
    D'Elia, Andrew
    Shamoun, Valentina
    Haykal, Siba
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (03)
  • [2] Gene and MicroRNA Profiling of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells
    Wang, Lina
    Su, Weijun
    Du, Wei
    Xu, Yang
    Wang, Lijun
    Kong, Deling
    Han, Zhongchao
    Zheng, Guoguang
    Li, Zongjin
    STEM CELL REVIEWS AND REPORTS, 2015, 11 (02) : 219 - 227
  • [3] MicroRNA characterization in equine induced pluripotent stem cells
    Natalia Moro, Lucia
    Amin, Guadalupe
    Furmento, Veronica
    Waisman, Ariel
    Garate, Ximena
    Neiman, Gabriel
    La Greca, Alejandro
    Santin Velazque, Natalia Lucia
    Luzzani, Carlos
    Sevlever, Gustavo E.
    Vichera, Gabriel
    Gabriel Miriuka, Santiago
    PLOS ONE, 2018, 13 (12):
  • [4] MicroRNA profiling during directed differentiation of cortical interneurons from human-induced pluripotent stem cells
    Tu, Jiajie
    Cao, Dandan
    Li, Lu
    Cheung, Hoi-Hung
    Chan, Wai-Yee
    FEBS OPEN BIO, 2018, 8 (04): : 502 - 512
  • [5] Neutrophil Differentiation From Human-Induced Pluripotent Stem Cells
    Morishima, Tatsuya
    Watanabe, Ken-ichiro
    Niwa, Akira
    Fujino, Hisanori
    Matsubara, Hiroshi
    Adachi, Souichi
    Suemori, Hirofumi
    Nakahata, Tatsutoshi
    Heike, Toshio
    JOURNAL OF CELLULAR PHYSIOLOGY, 2011, 226 (05) : 1283 - 1291
  • [6] Derivation of primitive neural stem cells from human-induced pluripotent stem cells
    Shin, Woo Jung
    Seo, Ji-Hye
    Choi, Hyun Woo
    Hong, Yean Ju
    Lee, Won Ji
    Chae, Jung Il
    Kim, Sung Joo
    Lee, Jeong Woong
    Hong, Kwonho
    Song, Hyuk
    Park, Chankyu
    Do, Jeong Tae
    JOURNAL OF COMPARATIVE NEUROLOGY, 2019, 527 (18) : 3023 - 3033
  • [7] Longitudinal metabolic profiling of cardiomyocytes derived from human-induced pluripotent stem cells
    Bekhite, Mohamed M.
    Delgado, Andres Gonzalez
    Menz, Florian
    Kretzschmar, Tom
    Wu, Jasmine M. F.
    Bekfani, Tarek
    Nietzsche, Sandor
    Wartenberg, Maria
    Westermann, Martin
    Greber, Boris
    Schulze, P. Christian
    BASIC RESEARCH IN CARDIOLOGY, 2020, 115 (04)
  • [8] MicroRNA Profiling During Neural Differentiation of Induced Pluripotent Stem Cells
    Kulcenty, Katarzyna
    Wroblewska, Joanna P.
    Rucinski, Marcin
    Kozlowska, Emilia
    Jopek, Karol
    Suchorska, Wiktoria M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (15)
  • [9] Early Senescence Is Not an Inevitable Fate of Human-Induced Pluripotent Stem-Derived Cells
    Gokoh, Maiko
    Nishio, Miwako
    Nakamura, Naoko
    Matsuyama, Satoko
    Nakahara, Masako
    Suzuki, Shinnosuke
    Mitsumoto, Masami
    Akutsu, Hidenori
    Umezawa, Akihiro
    Yasuda, Kazuki
    Yuo, Akira
    Saeki, Kumiko
    CELLULAR REPROGRAMMING, 2011, 13 (04) : 361 - 370
  • [10] Connexin 43 is involved in the generation of human-induced pluripotent stem cells
    Ke, Qiong
    Li, Li
    Cai, Bing
    Liu, Chang
    Yang, Yan
    Gao, Yong
    Huang, Weijun
    Yuan, Xiaofeng
    Wang, Tao
    Zhang, Qi
    Harris, Andrew L.
    Tao, Liang
    Xiang, Andy Peng
    HUMAN MOLECULAR GENETICS, 2013, 22 (11) : 2221 - 2233