Random forest algorithm for classification of multiwavelength data

被引:45
作者
Gao, Dan [1 ,2 ]
Zhang, Yan-Xia [1 ]
Zhao, Yong-Heng [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
classification; astronomical databases: miscellaneous; catalogs; methods: data analysis; methods: statistical; SKY SURVEY;
D O I
10.1088/1674-4527/9/2/011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduced a decision tree method called Random Forests for multiwavelength data classification. The data were adopted from different databases, including the Sloan Digital Sky Survey (SDSS) Data Release five, USNO, FIRST and ROSAT. We then studied the discrimination of quasars from stars and the classification of quasars, stars and galaxies with the sample from optical and radio bands and with that from optical and X-ray bands. Moreover, feature selection and feature weighting based on Random Forests were investigated. The performances based on different input patterns were compared. The experimental results show that the random forest method is an effective method for astronomical object classification and can be applied to other classification problems faced in astronomy. In addition, Random Forests will show its superiorities due to its own merits, e.g. classification, feature selection, feature weighting as well as outlier detection.
引用
收藏
页码:220 / 226
页数:7
相关论文
共 19 条
[1]  
Adams A., 1994, Vistas in Astronomy, V38, P273, DOI 10.1016/0083-6656(94)90037-X
[2]   Implementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC [J].
Albert, J. ;
Aliu, E. ;
Anderhub, H. ;
Antoranz, P. ;
Armada, A. ;
Asensio, M. ;
Baixeras, C. ;
Barrio, J. A. ;
Bartko, H. ;
Bastieri, D. ;
Becker, J. ;
Bednarek, W. ;
Berger, K. ;
Bigongiari, C. ;
Biland, A. ;
Bock, R. K. ;
Bordas, P. ;
Bosch-Ramon, V. ;
Bretz, T. ;
Britvitch, I. ;
Camara, M. ;
Carmona, E. ;
Chilingarian, A. ;
Ciprini, S. ;
Coarasa, J. A. ;
Commichau, S. ;
Contreras, J. L. ;
Cortina, J. ;
Costado, M. T. ;
Curtef, V. ;
Danielyan, V. ;
Dazzi, F. ;
De Angelis, A. ;
Delgado, C. ;
de los Reyes, R. ;
De Lotto, B. ;
Domingo-Santamaria, E. ;
Dorner, D. ;
Doro, M. ;
Errando, M. ;
Fagiolini, M. ;
Ferenc, D. ;
Fernandez, E. ;
Firpo, R. ;
Flix, J. ;
Fonseca, M. V. ;
Font, L. ;
Fuchs, M. ;
Galante, N. ;
Garcia-Lopez, R. J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 588 (03) :424-432
[3]   How to find more supernovae with less work: Object classification techniques for difference imaging [J].
Bailey, S. ;
Aragon, C. ;
Romano, R. ;
Thomas, R. C. ;
Weaver, B. A. ;
Wong, D. .
ASTROPHYSICAL JOURNAL, 2007, 665 (02) :1246-1253
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Random forests: Finding quasars [J].
Breiman, L ;
Last, M ;
Rice, J .
STATISTICAL CHALLENGES IN ASTRONOMY, 2003, :243-254
[6]  
CARLILES S, 2007, ASTROPH07112477
[7]   The USNO-B catalog [J].
Monet, DG ;
Levine, SE ;
Canzian, B ;
Ables, HD ;
Bird, AR ;
Dahn, CC ;
Guetter, HH ;
Harris, HC ;
Henden, AA ;
Leggett, SK ;
Levison, HF ;
Luginbuhl, CB ;
Martini, J ;
Monet, AKB ;
Munn, JA ;
Pier, JR ;
Rhodes, AR ;
Riepe, B ;
Sell, S ;
Stone, RC ;
Vrba, FJ ;
Walker, RL ;
Westerhout, G ;
Brucato, RJ ;
Reid, IN ;
Schoening, W ;
Hartley, M ;
Read, MA ;
Tritton, SB .
ASTRONOMICAL JOURNAL, 2003, 125 (02) :984-993
[8]   Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds [J].
Schlegel, DJ ;
Finkbeiner, DP ;
Davis, M .
ASTROPHYSICAL JOURNAL, 1998, 500 (02) :525-553
[9]  
SODRE L, 1994, VISTAS ASTRON, V38, P286
[10]  
Storrie-Lombardi M. C., 1992, MNRAS, V259, P8, DOI DOI 10.1093/mnras/259.1.8P