On the norm of the hyperinterpolation operator on the unit disc and its use for the solution of the nonlinear Poisson equation

被引:22
作者
Hansen, Olaf [2 ]
Atkinson, Kendall [1 ]
Chien, David [2 ]
机构
[1] Univ Iowa, Dept Math & Comp Sci, Iowa City, IA 52242 USA
[2] Calif State Univ San Marcos, Dept Math, San Marcos, TX USA
关键词
hyperinterpolation operator; discrete Galerkin method; projector norm; nonlinear Poisson equation; CONSTRUCTIVE POLYNOMIAL-APPROXIMATION; INTEGRAL-EQUATIONS; BALL; INTERPOLATION; SPHERE;
D O I
10.1093/imanum/drm052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the properties of the hyperinterpolation operator on the unit disc D in (2). We show how hyperinterpolation can be used in connection with the Kumar-Sloan method to approximate the solution of a nonlinear Poisson equation on the unit disc (discrete Galerkin method). A bound for the norm of the hyperinterpolation operator in the space C(D) is derived. Our results prove the convergence of the discrete Galerkin method in the maximum norm if the solution of the Poisson equation is in the class C-1,C- (delta)(D), delta > 0. Finally, we present numerical examples which show that the discrete Galerkin method converges faster than O(n(-k)), for every k is an element of if the solution of the nonlinear Poisson equation is in C-infinity(D).
引用
收藏
页码:257 / 283
页数:27
相关论文
共 20 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]  
Andrews G. E., 2001, Special Functions
[3]  
[Anonymous], 1975, AM MATH SOC C PUBLIC
[4]  
Atkinson K, 2004, ELECTRON T NUMER ANA, V17, P206
[5]  
ATKINSON K, 1987, MATH COMPUT, V48, P595, DOI 10.1090/S0025-5718-1987-0878693-6
[6]  
ATKINSON K, 2006, J INTEGRAL EQU APPL, V17, P223
[7]  
ATKINSON K, 1987, MATH COMPUT, V48, pS11
[8]  
Atkinson K.E., 1997, Cambridge Monographs on Applied and Computational Mathematics, V4
[9]  
Brass H., 1977, Quadraturverfahren
[10]  
Byrd P. F., 1971, HDB ELLIPTIC INTEGRA