On nonlinear evolution variational inequalities involving variable exponent

被引:0
作者
Xiang, Mingqi [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear evolution variational inequality; variable exponent space; penalty method; extinction; global attractor; PARABOLIC EQUATIONS; EXISTENCE; ATTRACTORS; UNIQUENESS; SEMIFLOWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a class of quasilinear evolution variational inequalities with variable exponent growth conditions in a generalized Sobolev space. We obtain the existence of weak solutions by means of penalty method. Moreover, we study the extinction properties of weak solutions to parabolic in- equalities and provide a sufficient condition that makes the weak solutions vanish in a finite time. The existence of global attractors for weak solutions is also obtained via the theories of multi-valued semiflow.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [31] Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities
    Messaoudi, Salim A.
    Al-Smail, Jamal H.
    Talahmeh, Ala A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (08) : 1863 - 1875
  • [32] MULTIPLICITY RESULTS FOR A NONLINEAR ROBIN PROBLEM WITH VARIABLE EXPONENT
    Saiedinezhad, Somayeh
    Radulescu, Vicentiu D.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (08) : 1567 - 1582
  • [33] ON A CLASS OF NONHOMOGENOUS QUASILINEAR PROBLEM INVOLVING SOBOLEV SPACES WITH VARIABLE EXPONENT
    Souayah, Asma Karoui
    Kefi, Khaled
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (01): : 309 - 328
  • [34] Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent
    Fu, Yongqiang
    Xiang, Mingqi
    APPLICABLE ANALYSIS, 2016, 95 (03) : 524 - 544
  • [35] Solutions of Ginzburg-Landau-Type Equations Involving Variable Exponent
    Avci, Mustafa
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 369 - 384
  • [36] Critical p(x)-Kirchhoff Problems Involving Variable Singular Exponent
    Mokhtari, Abdelhak
    Saoudi, Kamel
    Zuo, Jiabin
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2917 - 2942
  • [37] WEAK SOLVABILITY OF NONLINEAR ELLIPTIC EQUATIONS INVOLVING VARIABLE EXPONENTS
    Aberqi, Ahmed
    Bennouna, Jaouad
    Benslimane, Omar
    Ragusa, Maria Alessandra
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1142 - 1157
  • [38] A class of generalized evolution variational inequalities in Banach spaces
    Xiao, Yi-bin
    Huang, Nan-jing
    Cho, Yeol Je
    APPLIED MATHEMATICS LETTERS, 2012, 25 (06) : 914 - 920
  • [39] ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 379 - 389
  • [40] Nonlinear parabolic capacity and renormalized solutions for PDEs with diffuse measure data and variable exponent
    Abdellaoui, Mohammed
    Azroul, Elhoussine
    Ouaro, Stanislas
    Traore, Urbain
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2019, 46 (02): : 269 - 297