Infinite Families of Optimal Linear Codes Constructed From Simplicial Complexes

被引:41
作者
Hyun, Jong Yoon [1 ]
Lee, Jungyun [2 ]
Lee, Yoonjin [3 ]
机构
[1] Konkuk Univ, Glocal Campus, Chungju 27478, South Korea
[2] Kangwon Natl Univ, Dept Math Educ, Chunchon 24341, South Korea
[3] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Optimal linear code; Griesmer code; simplicial complex; weight distribution; 2-WEIGHT;
D O I
10.1109/TIT.2020.2993179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes C Delta(c) constructed from simplicial complexes in F-2(n), where. is a simplicial complex in F-n(2) and Delta(c) the complement of.. We first find an explicit computable criterion for C Delta(c) to be optimal; this criterion is given in terms of the 2-adic valuation of s i=1 2| Ai|-1, where the Ai's are maximal elements of Delta. Furthermore, we obtain much simpler criteria under various specific conditions on the maximal elements of Delta. In particular, we find that C Delta(.) is a Griesmer code if and only if the maximal elements of Delta are pairwise disjoint and their sizes are all distinct. Specially, when F has exactly two maximal elements, we explicitly determine the weight distribution of C(Delta)c. We present many optimal linear codes constructed by our method, and we emphasize that we obtain at least 32 new optimal linear codes.
引用
收藏
页码:6762 / 6773
页数:12
相关论文
共 24 条
[1]   Face Numbers of Down-Sets [J].
Adamaszek, Michal .
AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (04) :367-370
[2]   Minimal vectors in linear codes [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :2010-2017
[3]  
Belov B. I., 1972, ALL UNION SUMMER SEM, V182, P100
[4]  
Blakley G.R., 1979, P 1979 AFIPS NAT COM, P313
[5]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[6]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[7]   Linear codes from simplicial complexes [J].
Chang, Seunghwan ;
Hyun, Jong Yoon .
DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (10) :2167-2181
[8]   A Lower Bound on the Optimum Distance Profiles of the Second-Order Reed-Muller Codes [J].
Chen, Yanling ;
Vinck, A. J. Han .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) :4309-4320
[9]  
Cohen Gerard D., 2013, Cryptography and Coding. 14th IMA International Conference, IMACC 2013. Proceedings: LNCS 8308, P85, DOI 10.1007/978-3-642-45239-0_6
[10]  
Ding CS, 2003, LECT NOTES COMPUT SC, V2731, P11