The multiplicative Jordan decomposition in the integral group ring Z [Q8 x Cp]

被引:1
|
作者
Kuo, Wentang [1 ]
Sun, Wei-Liang [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Fac Math, Waterloo, ON N2L 3G1, Canada
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
Integral group ring; Multiplicative Jordan decomposition; Group Q(8) x C-p; Chebotarev density;
D O I
10.1016/j.jalgebra.2019.06.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime such that the multiplicative order m of 2 modulo p is even. We prove that the integral group ring Z[Q(8) x C-p] has the multiplicative Jordan decomposition property when m is congruent to 2 modulo 4. There are infinitely many such primes and these primes include the case p equivalent to 3 (mod 4). We also prove that Z[Q(8) x C-5] has the multiplicative Jordan decomposition property in a new way. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:16 / 33
页数:18
相关论文
共 10 条