A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana

被引:126
作者
Dunn, TM
Lynch, DV
Michaelson, LV
Napier, JA [1 ]
机构
[1] Rothamsted Res, Harpenden AL5 2JQ, Herts, England
[2] Uniformed Serv Univ Hlth Sci, Bethesda, MD 20814 USA
[3] Williams Coll, Williamstown, MA 01267 USA
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
Arabidopsis thatiana; ceramide; desaturase; lipid metabolism; long chain base; post-genomics; Saccharomyces cerevisiae; signalling; sphingolipid;
D O I
10.1093/aob/mch071
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Aims To highlight the importance of sphingolipids and their metabolites in plant biology. Scope The completion of the arabidopsis genome provides a platform for the identification and functional characterization of genes involved in sphingolipid biosynthesis. Using the yeast Saccharomyces cerevisiae as an experimental model, this review annotates arabidopsis open reading frames likely to be involved in sphingolipid metabolism. A number of these open reading frames have already been subject to functional characterization, though the majority still awaits investigation. Plant-specific aspects of sphingolipid biology (such as enhanced long chain base heterogeneity) are considered in the context of the emerging roles for these lipids in plant form and function. Conclusions Arabidopsis provides an excellent genetic and post-genomic model for the characterization of the roles of sphingolipids in higher plants. (C) 2004 Annals of Botany Company.
引用
收藏
页码:483 / 497
页数:15
相关论文
共 119 条
  • [1] FUMONISIN-INDUCED AND AAL-TOXIN-INDUCED DISRUPTION OF SPHINGOLIPID METABOLISM WITH ACCUMULATION OF FREE SPHINGOID BASES
    ABBAS, HK
    TANAKA, T
    DUKE, SO
    PORTER, JK
    WRAY, EM
    HODGES, L
    SESSIONS, AE
    WANG, E
    MERRILL, AH
    RILEY, RT
    [J]. PLANT PHYSIOLOGY, 1994, 106 (03) : 1085 - 1093
  • [2] Baldwin TC, 2001, PLANT CELL, V13, P2283, DOI 10.1105/tpc.13.10.2283
  • [3] A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase
    Beaudoin, F
    Gable, K
    Sayanova, O
    Dunn, T
    Napier, JA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (13) : 11481 - 11488
  • [4] BECKMANN, 2003, ORGANIC BIOMOLECULAR, V1, P2448
  • [5] BEELER T, 1994, J BIOL CHEM, V269, P7279
  • [6] The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant
    Beeler, T
    Bacikova, D
    Gable, K
    Hopkins, L
    Johnson, C
    Slife, H
    Dunn, T
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (46) : 30688 - 30694
  • [7] SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide
    Beeler, TJ
    Fu, D
    Rivera, J
    Monaghan, E
    Gable, K
    Dunn, TM
    [J]. MOLECULAR & GENERAL GENETICS, 1997, 255 (06): : 570 - 579
  • [8] BILLE J, 1992, PHYSIOL PLANTARUM, V84, P250, DOI 10.1111/j.1399-3054.1992.tb04661.x
  • [9] Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases
    Blacklock, BJ
    Jaworski, JG
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (19): : 4789 - 4798
  • [10] LIPID INTERMOLECULAR HYDROGEN-BONDING - INFLUENCE ON STRUCTURAL ORGANIZATION AND MEMBRANE-FUNCTION
    BOGGS, JM
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 906 (03) : 353 - 404