Adaptive fixed-time control for Lorenz systems

被引:23
作者
Wang, Huanqing [1 ]
Yue, Hanxue [1 ]
Liu, Siwen [1 ]
Li, Tieshan [2 ,3 ]
机构
[1] Bohai Univ, Coll Math Sci, Jinzhou 121000, Liaoning, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[3] Dalian Maritime Univ, Sch Nav Coll, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive backstepping control; Fixed-time control; Lorenz system; FINITE-TIME; NONLINEAR-SYSTEMS; BACKSTEPPING CONTROL; FEEDBACK-CONTROL; STABILIZATION; SYNCHRONIZATION; DESIGN;
D O I
10.1007/s11071-020-06061-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper focuses on the problem of fixed-time chaos suppression and stabilization of a class of Lorenz systems with uncertain parameters. Based on the fixed-time stability theory, adaptive control and backstepping algorithm, a novel adaptive practical fixed-time controller is proposed. It is shown that the presented control scheme can guarantee that all the signals of the closed-loop system are bounded and chaotic phenomenon is suppressed in the fixed time. Both the theoretical analysis and simulation results verify the effectiveness of the proposed control strategy.
引用
收藏
页码:2617 / 2625
页数:9
相关论文
共 40 条
[1]   Adaptive Backstepping Control of an Electrohydraulic Actuator [J].
Ahn, Kyoung Kwan ;
Doan Ngoc Chi Nam ;
Jin, Maolin .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (03) :987-995
[2]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[3]  
Cai G., 2007, Int. J. Nonlinear Sci., V1, P17
[4]   Adaptive Fuzzy Practical Fixed-Time Tracking Control of Nonlinear Systems [J].
Chen, Ming ;
Wang, Huanqing ;
Liu, Xiaoping .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (03) :664-673
[5]   Unstable periodic orbits analysis in the generalized Lorenz-type system [J].
Dong, Chengwei ;
Liu, Huihui ;
Li, Hantao .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (07)
[6]  
Dorato P., 1961, P IRE INT CONV REC P, V4, P83
[7]   Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization [J].
Du, Haibo ;
Li, Shihua ;
Qian, Chunjiang .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2711-2717
[8]   Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint [J].
Fang, Liandi ;
Ma, Li ;
Ding, Shihong ;
Zhao, Dean .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 :63-79
[9]   An adaptive feedback control of linearizable chaotic systems [J].
Feki, M .
CHAOS SOLITONS & FRACTALS, 2003, 15 (05) :883-890
[10]  
Feng X, 2007, 2007 CHIN CONTR C IE, DOI [10.1109/CHICC.2006.4347337, DOI 10.1109/CHICC.2006.4347337]