A vector projection method for solving the Navier-Stokes equations

被引:27
作者
Caltagirone, JP [1 ]
Breil, J [1 ]
机构
[1] Univ Bordeaux 1, Ecole Natl Super Chim & Phys Bordeaux, MASTER, F-33402 Talence, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE | 1999年 / 327卷 / 11期
关键词
fluid mechanics; Navier-Stokes; finite volumes; projection method; Green-Taylor whirl;
D O I
10.1016/S1287-4620(00)88522-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a method of solving the Navier-Stokes equations in incompressible flow It is based on the projection of the velocity field, approached by a prediction step on a zero divergence field. The novelty of this method concerns how the projection is made, directly operating on all the components of the velocity field through a coupling. A highly implicit algorithm allows Its to maintain all physical boundary conditions of the problem during the solution steps. (C) 1999 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1179 / 1184
页数:6
相关论文
共 11 条
[1]  
ARQUIS E, 1984, CR ACAD SCI II, V299, P1
[2]   A numerical method for solving incompressible viscous flow problems (Reprinted from the Journal of Computational Physics, vol 2, pg 12-26, 1997) [J].
Chorin, AJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :118-125
[3]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[4]  
Fortin M., 1982, METHODES MATH INFORM, V9
[5]  
Hugues S, 1998, INT J NUMER METH FL, V28, P501, DOI 10.1002/(SICI)1097-0363(19980915)28:3<501::AID-FLD730>3.0.CO
[6]  
2-S
[7]  
KHADRA K, IN PRESS INT J NUMER
[8]  
Nicolas X, 1997, INT J NUMER METH FL, V25, P265, DOI 10.1002/(SICI)1097-0363(19970815)25:3<265::AID-FLD548>3.0.CO
[9]  
2-B
[10]  
Patankar S. V., 1990, NUMERICAL HEAT TRANS