ACTION RECOGNITION USING UNDECIMATED DUAL TREE COMPLEX WAVELET TRANSFORM FROM DEPTH MOTION MAPS/DEPTH SEQUENCES

被引:2
作者
Shekar, B. H. [1 ]
Shetty, Rathnakara P. [1 ]
Kumari, Sharmila M. [2 ]
Mestetsky, Leonid [3 ]
机构
[1] Mangalore Univ, Mangalore, Karnataka, India
[2] PA Coll Engn, Mangalore, Karnataka, India
[3] Lomonosov Moscow State Univ, Moscow, Russia
来源
INTERNATIONAL WORKSHOP ON PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE | 2019年 / 42-2卷 / W12期
基金
俄罗斯基础研究基金会;
关键词
Depth Maps; Wavelet Transform; Stridden Depth Motion Map; Action Recognition; FUSION; MAP;
D O I
10.5194/isprs-archives-XLII-2-W12-203-2019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accumulating the motion information from a video sequence is one of the highly challenging and significant phase in Human Action Recognition. To achieve this, several classical and compact representations are proposed by the research community with proven applicability. In this paper, we propose a compact Depth Motion Map based representation methodology with hastey striding, concisely accumulating the motion information. We extract Undecimated Dual Tree Complex Wavelet Transform features from the proposed DMM, to form an efficient feature descriptor. We designate a Sequential Extreme Learning Machine for classifying the human action secquences on benchmark datasets, MSR Action 3D dataset and DHA Dataset. We empirically prove the feasability of our method under standard protocols, achieving proven results.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 30 条
[1]   Human activity recognition from 3D data: A review [J].
Aggarwal, J. K. ;
Xia, Lu .
PATTERN RECOGNITION LETTERS, 2014, 48 :70-80
[2]  
[Anonymous], 2014, ASIAN C COMPUTER VIS
[3]  
Blank M, 2005, IEEE I CONF COMP VIS, P1395
[4]   The recognition of human movement using temporal templates [J].
Bobick, AF ;
Davis, JW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (03) :257-267
[5]  
Bulbul Mohammad Farhad, 2015, Intelligent Computing Theories and Methodologies. 11th International Conference, ICIC 2015. Proceedings: LNCS 9225, P271, DOI 10.1007/978-3-319-22180-9_27
[6]   DMMs-Based Multiple Features Fusion for Human Action Recognition [J].
Bulbul, Mohammad Farhad ;
Jiang, Yunsheng ;
Ma, Jinwen .
INTERNATIONAL JOURNAL OF MULTIMEDIA DATA ENGINEERING & MANAGEMENT, 2015, 6 (04) :23-39
[7]   Human Action Recognition Based on DMMs, HOGs and Contourlet Transform [J].
Bulbul, Mohammad Farhad ;
Jiang, Yunsheng ;
Ma, Jinwen .
2015 1ST IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2015, :389-394
[8]  
Chen C., 2016, P 2016 INT C ARTIFIC, P3331
[9]   Action recognition from depth sequences using weighted fusion of 2D and 3D auto-correlation of gradients features [J].
Chen, Chen ;
Zhang, Baochang ;
Hou, Zhenjie ;
Jiang, Junjun ;
Liu, Mengyuan ;
Yang, Yun .
MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (03) :4651-4669
[10]   Gradient Local Auto-Correlations and Extreme Learning Machine for Depth-Based Activity Recognition [J].
Chen, Chen ;
Hou, Zhenjie ;
Zhang, Baochang ;
Jiang, Junjun ;
Yang, Yun .
ADVANCES IN VISUAL COMPUTING, PT I (ISVC 2015), 2015, 9474 :613-623