ACTION RECOGNITION USING UNDECIMATED DUAL TREE COMPLEX WAVELET TRANSFORM FROM DEPTH MOTION MAPS/DEPTH SEQUENCES

被引:2
|
作者
Shekar, B. H. [1 ]
Shetty, Rathnakara P. [1 ]
Kumari, Sharmila M. [2 ]
Mestetsky, Leonid [3 ]
机构
[1] Mangalore Univ, Mangalore, Karnataka, India
[2] PA Coll Engn, Mangalore, Karnataka, India
[3] Lomonosov Moscow State Univ, Moscow, Russia
来源
INTERNATIONAL WORKSHOP ON PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE | 2019年 / 42-2卷 / W12期
基金
俄罗斯基础研究基金会;
关键词
Depth Maps; Wavelet Transform; Stridden Depth Motion Map; Action Recognition; FUSION; MAP;
D O I
10.5194/isprs-archives-XLII-2-W12-203-2019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accumulating the motion information from a video sequence is one of the highly challenging and significant phase in Human Action Recognition. To achieve this, several classical and compact representations are proposed by the research community with proven applicability. In this paper, we propose a compact Depth Motion Map based representation methodology with hastey striding, concisely accumulating the motion information. We extract Undecimated Dual Tree Complex Wavelet Transform features from the proposed DMM, to form an efficient feature descriptor. We designate a Sequential Extreme Learning Machine for classifying the human action secquences on benchmark datasets, MSR Action 3D dataset and DHA Dataset. We empirically prove the feasability of our method under standard protocols, achieving proven results.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 38 条
  • [1] Enhanced Depth Motion Maps for Improved Human Action Recognition from Depth Action Sequences
    Rao, Dustakar Surendra
    Rao, L. Koteswara
    Bhagyaraju, Vipparthi
    Meng, Goh Kam
    TRAITEMENT DU SIGNAL, 2024, 41 (03) : 1461 - 1472
  • [2] Spatio-temporal Cuboid Pyramid for Action Recognition using Depth Motion Sequences
    Ji, Xiaopeng
    Cheng, Jun
    Feng, Wei
    2016 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2016, : 208 - 213
  • [3] Action recognition using multi-directional projected depth motion maps
    Satyamurthi S.
    Tian J.
    Chua M.C.H.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (11) : 14767 - 14773
  • [4] Action Recognition From Depth Maps Using Deep Convolutional Neural Networks
    Wang, Pichao
    Li, Wanqing
    Gao, Zhimin
    Zhang, Jing
    Tang, Chang
    Ogunbona, Philip O.
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2016, 46 (04) : 498 - 509
  • [5] Fusing appearance and motion information for action recognition on depth sequences
    Pei, Cong
    Jiang, Feng
    Li, Mao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 4287 - 4299
  • [6] Cross-view human action recognition from depth maps using spectral graph sequences
    Kerola, Tommi
    Inoue, Nakamasa
    Shinoda, Koichi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 154 : 108 - 126
  • [7] Depth from defocus using wavelet transform
    Asif, M
    Choi, TS
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (01): : 250 - 253
  • [8] EFFICIENT ACTION RECOGNITION FROM COMPRESSED DEPTH MAPS
    Miao, Jie
    Jia, Xiaoyi
    Mathew, Reji
    Xu, Xiangmin
    Taubman, David
    Qing, Chunmei
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 16 - 20
  • [9] Skeleton embedded motion body partition for human action recognition using depth sequences
    Ji, Xiaopeng
    Cheng, Jun
    Feng, Wei
    Tao, Dapeng
    SIGNAL PROCESSING, 2018, 143 : 56 - 68
  • [10] Action Recognition Based on Multi-feature Depth Motion Maps
    Wang, Dongli
    Ou, Fang
    Zhou, Yan
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 2683 - 2688