Performance evaluation of an evolutionary method for RoboCup soccer strategies

被引:0
作者
Nakashima, Tomoharu
Takatani, Masahiro
Udo, Masayo
Ishibuchi, Hisao
Nii, Manabu
机构
[1] Osaka Prefecture Univ, Sakai, Osaka 5998531, Japan
[2] Univ Hyogo, Himeji, Hyogo 6712201, Japan
来源
ROBOCUP 2005: ROBOT SOCCER WORLD CUP IX | 2006年 / 4020卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an evolutionary method for acquiring team strategies of RoboCup soccer agents. The action of an agent in a subspace is specified by a set of action rules. The antecedent part of action rules includes the position of the agent and the distance to the nearest opponent. The consequent part indicates the action that the agent takes when the antecedent part of the action rule is satisfied. The action of each agent is encoded into an integer string that represents the action rules. A chromosome is the concatenated string of integer strings for all agents. We employ an ES-type generation update scheme after producing new integer strings by using crossover and mutation. Through computer simulations, we show the effectiveness of the proposed method.
引用
收藏
页码:616 / 623
页数:8
相关论文
共 5 条
[1]  
Back T., 1996, EVOLUTIONARY ALGORIT
[2]   Evolving an expert checkers playing program without using human expertise [J].
Chellapilla, K ;
Fogel, DB .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (04) :422-428
[3]   Evolving neural networks to play checkers without relying on expert knowledge [J].
Chellapilla, K ;
Fogel, DB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (06) :1382-1391
[4]  
LUKE S, 1996, P 1 ANN C GEN PROGR, P150
[5]  
NAKASHIMA T, 2003, IN PRESS ROBOCUP 200