Uniqueness and stability of an inverse problem for a phase field model using data from one component
被引:4
作者:
Wu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
Wu, Bin
[1
]
Chen, Qun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
Chen, Qun
[1
]
Wang, Zewen
论文数: 0引用数: 0
h-index: 0
机构:
E China Inst Technol, Sch Sci, Dept Math, Nanchang 330013, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
Wang, Zewen
[2
]
机构:
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] E China Inst Technol, Sch Sci, Dept Math, Nanchang 330013, Peoples R China
We study an inverse problem of determining a spatial varying coefficient in a parabolic-hyperbolic phase field model with the following observation data of only one component: the order parameter in a subdomain omega satisfying partial derivative omega superset of partial derivative Omega along a sufficiently large time interval and at a suitable time over the whole spatial domain. Based on a Carleman estimate for the parabolic-hyperbolic phase field system, we prove the Lipschitz stability and uniqueness for this inverse problem. (C) 2013 Elsevier Ltd. All rights reserved.