Uniqueness and stability of an inverse problem for a phase field model using data from one component

被引:4
作者
Wu, Bin [1 ]
Chen, Qun [1 ]
Wang, Zewen [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] E China Inst Technol, Sch Sci, Dept Math, Nanchang 330013, Peoples R China
关键词
Phase field model; Inverse problem; Carleman estimate; Lipschitz stability; Uniqueness; LIPSCHITZ STABILITY; SYSTEM;
D O I
10.1016/j.camwa.2013.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem of determining a spatial varying coefficient in a parabolic-hyperbolic phase field model with the following observation data of only one component: the order parameter in a subdomain omega satisfying partial derivative omega superset of partial derivative Omega along a sufficiently large time interval and at a suitable time over the whole spatial domain. Based on a Carleman estimate for the parabolic-hyperbolic phase field system, we prove the Lipschitz stability and uniqueness for this inverse problem. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2126 / 2138
页数:13
相关论文
共 29 条
  • [1] Long-time convergence of solutions to a phase-field system
    Aizicovici, S
    Feireisl, E
    Issard-Roch, F
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (05) : 277 - 287
  • [2] [Anonymous], ELECT J DIFFERENTIAL
  • [3] [Anonymous], 2003, SOBOLEV SPACES
  • [4] [Anonymous], 2008, APPL MATH
  • [5] Reconstruction of two time independent coefficients in an inverse problem for a phase field system
    Baranibalan, N.
    Sakthivel, K.
    Balachandran, K.
    Kim, J. -H.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) : 2841 - 2851
  • [6] Inverse problems for the phase field system with one observation
    Baranibalan, N.
    Sakthivel, K.
    Balachandran, K.
    Kim, J. -H.
    [J]. APPLICABLE ANALYSIS, 2009, 88 (04) : 529 - 545
  • [7] Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases
    Bellassoued, Mourad
    Yamamoto, Masahiro
    [J]. APPLICABLE ANALYSIS, 2012, 91 (01) : 35 - 67
  • [8] Carleman estimates and an inverse heat source problem for the thermoelasticity system
    Bellassoued, Mourad
    Yamamoto, Masahiro
    [J]. INVERSE PROBLEMS, 2011, 27 (01)
  • [9] Inverse problem for a parabolic system with two components by measurements of one component
    Benabdallah, Assia
    Cristofol, Michel
    Gaitan, Patricia
    Yamamoto, Masahiro
    [J]. APPLICABLE ANALYSIS, 2009, 88 (05) : 683 - 709
  • [10] Brochet D., 1993, Applicable Analysis, V49, P197, DOI 10.1080/00036819108840173