Reference gene selection for reverse transcription quantitative polymerase chain reaction in chicken hypothalamus under different feeding status

被引:13
作者
Simon, A. [1 ]
Javor, A. [1 ]
Bai, P. [2 ,3 ,4 ]
Olah, J. [1 ]
Czegledi, L. [1 ]
机构
[1] Univ Debrecen, Fac Agr & Food Sci & Environm Management, Dept Anim Sci, Debrecen, Hungary
[2] Univ Debrecen, Dept Med Chem, Fac Med, Debrecen, Hungary
[3] MTA DE Lendulet Lab Cellular Metab Res Grp, Debrecen, Hungary
[4] Univ Debrecen, Res Ctr Mol Med, Fac Med, Debrecen, Hungary
关键词
expression stability; fasting; internal controls; normalization; quantitative real-time polymerase chain reaction; refeeding; REAL-TIME PCR; RELIABLE REFERENCE GENES; HOUSEKEEPING GENES; RECEPTOR-ALPHA; EXPRESSION; IDENTIFICATION; NORMALIZATION; MODEL;
D O I
10.1111/jpn.12690
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
This study was designed to investigate the stability of 10 candidate reference genes, namely ACTB, B2M, GAPDH, HMBS, LBR, POLR2B, RN18S, RPS17, TBP, and YWHAZ for the normalization of gene expression data obtained by quantitative real-time polymerase chain reaction (qPCR) in studies related to feed intake of chicken. Samples were isolated from hypothalamus under three different nutritional status (ad libitum, fasted for 24 hr, fasted for 24 hr then refed for 2 hr). Five different algorithms were applied for the analysis of reference gene stability: BestKeeper, geNorm, NormFinder, the comparative Delta Ct method, and a novel approach using multivariate linear mixed-effects modelling for stable reference gene selection. TBP and POLR2B were identified as the two most suitable and B2M and RN18S as the two least stable reference genes for normalization. Despite our review, the current literature showing that RN18S is one of the most commonly used reference gene in chicken gene expression studies, its applicability for normalization should be evaluated before each qPCR experiment.
引用
收藏
页码:286 / 296
页数:11
相关论文
共 44 条
[1]   Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J].
Andersen, CL ;
Jensen, JL ;
Orntoft, TF .
CANCER RESEARCH, 2004, 64 (15) :5245-5250
[2]   Investigating reference genes for quantitative real-time PCR analysis across four chicken tissues [J].
Bages, S. ;
Estany, J. ;
Tor, M. ;
Pena, R. N. .
GENE, 2015, 561 (01) :82-87
[3]   Structural basis of eukaryotic gene transcription [J].
Boeger, H ;
Bushnell, DA ;
Davis, R ;
Griesenbeck, J ;
Lorch, Y ;
Strattan, JS ;
Westover, KD ;
Kornberg, RD .
FEBS LETTERS, 2005, 579 (04) :899-903
[4]   Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs [J].
Borowska, D. ;
Rothwell, L. ;
Bailey, R. A. ;
Watson, K. ;
Kaiser, P. .
VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 2016, 170 :20-24
[5]   The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments [J].
Bustin, Stephen A. ;
Benes, Vladimir ;
Garson, Jeremy A. ;
Hellemans, Jan ;
Huggett, Jim ;
Kubista, Mikael ;
Mueller, Reinhold ;
Nolan, Tania ;
Pfaffl, Michael W. ;
Shipley, Gregory L. ;
Vandesompele, Jo ;
Wittwer, Carl T. .
CLINICAL CHEMISTRY, 2009, 55 (04) :611-622
[6]   Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization [J].
Cappelli, Katia ;
Felicetti, Michela ;
Capomaccio, Stefano ;
Spinsanti, Giacomo ;
Silvestrelli, Maurizio ;
Supplizi, Andrea Verini .
BMC MOLECULAR BIOLOGY, 2008, 9
[7]   Evaluation and Identification of Reliable Reference Genes for Pharmacogenomics, Toxicogenomics, and Small RNA Expression Analysis [J].
Chen, Dongliang ;
Pan, Xiaoping ;
Xiao, Peng ;
Farwell, Mary A. ;
Zhang, Baohong .
JOURNAL OF CELLULAR PHYSIOLOGY, 2011, 226 (10) :2469-2477
[8]   Selection of optimal reference genes for normalization in quantitative RT-PCR [J].
Chervoneva, Inna ;
Li, Yanyan ;
Schulz, Stephanie ;
Croker, Sean ;
Wilson, Chantell ;
Waldman, Scott A. ;
Hyslop, Terry .
BMC BIOINFORMATICS, 2010, 11
[9]   Phylogenesis and Biological Characterization of a New Glucose Transporter in the Chicken (Gallus gallus), GLUT12 [J].
Coudert, Edouard ;
Pascal, Geraldine ;
Dupont, Joelle ;
Simon, Jean ;
Cailleau-Audouin, Estelle ;
Crochet, Sabine ;
Duclos, Michel Jacques ;
Tesseraud, Sophie ;
Metayer-Coustard, Sonia .
PLOS ONE, 2015, 10 (10)
[10]   Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens [J].
De Boever, S. ;
Vangestel, C. ;
De Backer, P. ;
Croubels, S. ;
Sys, S. U. .
VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 2008, 122 (3-4) :312-317