Finite-range multiplexing enhances quantum key distribution via quantum repeaters

被引:5
作者
Abruzzo, Silvestre [1 ]
Kampermann, Hermann [1 ]
Bruss, Dagmar [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
关键词
ATOMIC ENSEMBLES; LINEAR OPTICS; COMMUNICATION; CRYPTOGRAPHY; SECURITY;
D O I
10.1103/PhysRevA.89.012303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum repeaters represent one possible way to achieve long-distance quantum key distribution. Collins et al. [O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007)] proposed multiplexing as a method to increase the repeater rate and to decrease the requirement of memory coherence time. Motivated by the experimental fact that long-range connections are practically demanding, in this paper we extend the original quantum repeater multiplexing protocol to the case of short-range connection. We derive analytical formulas for the repeater rate and we show that for short connection lengths it is possible to have most of the benefits of a full-range multiplexing protocol. Then we incorporate decoherence of quantum memories and we study the optimal matching for the Bell-state measurement protocol permitting us to minimize the memory requirements. Finally, we calculate the secret key rate and we show that the improvement via finite-range multiplexing is of the same order of magnitude as that via full-range multiplexing.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Measurement-device-independent quantum key distribution with quantum memories [J].
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (01)
[2]   Quantum repeaters and quantum key distribution: Analysis of secret-key rates [J].
Abruzzo, Silvestre ;
Bratzik, Sylvia ;
Bernardes, Nadja K. ;
Kampermann, Hermann ;
van Loock, Peter ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2013, 87 (05)
[3]  
[Anonymous], 2001, Introduction to Graph Theory
[4]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[5]   Rate analysis for a hybrid quantum repeater [J].
Bernardes, Nadja K. ;
Praxmeyer, Ludmila ;
van Loock, Peter .
PHYSICAL REVIEW A, 2011, 83 (01)
[6]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[7]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[8]   Maximum efficiency of a linear-optical Bell-state analyzer [J].
Calsamiglia, J ;
Lütkenhaus, N .
APPLIED PHYSICS B-LASERS AND OPTICS, 2001, 72 (01) :67-71
[9]   Multiplexed memory-insensitive quantum repeaters [J].
Collins, O. A. ;
Jenkins, S. D. ;
Kuzmich, A. ;
Kennedy, T. A. B. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[10]  
Curty M., ARXIV13071081