THE LEAST SQUARES ESTIMATOR FOR AN ORNSTEIN-UHLENBECK PROCESS DRIVEN BY A HERMITE PROCESS WITH A PERIODIC MEAN

被引:2
作者
Shen, Guangjun [1 ]
Yu, Qian [1 ,2 ]
Tang, Zheng [1 ,3 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[2] East China Normal Univ, Sch Stat, Shanghai 200062, Peoples R China
[3] Chuzhou Univ, Sch Math & Finance, Chuzhou 239012, Peoples R China
基金
中国国家自然科学基金;
关键词
Least squares estimator; consistency; asymptotic distribution; Ornstein-Uhlenbeck processes; Hermite processes; PARAMETER-ESTIMATION;
D O I
10.1007/s10473-021-0215-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the least square estimator for the parameters of Ornstein-Uhlenbeck processes dY(s)=(Sigma(k)(j=1)mu(j)phi(j)(s) - beta Y-s)ds + dZ(s)(q,H), driven by the Hermite process Z(s)(q,H) with order q >= 1 and a Hurst index H is an element of (1/2, 1), where the periodic functions phi(j)(s), j = 1...,k are bounded, and the real numbers mu(j), j = 1,..., k together with beta > 0 are unknown parameters. We establish the consistency of a least squares estimation and obtain the asymptotic behavior for the estimator. We also introduce alternative estimators, which can be looked upon as an application of the least squares estimator. In terms of the fractional Ornstein-Uhlenbeck processes with periodic mean, our work can be regarded as its non-Gaussian extension.
引用
收藏
页码:517 / 534
页数:18
相关论文
共 50 条
  • [41] Parameter Estimation for Ornstein-Uhlenbeck Process with Small Fractional Levy Noises
    Xu, Fang
    Zhao, Yongfei
    Wei, Chao
    ENGINEERING LETTERS, 2022, 30 (04) : 1566 - 1572
  • [42] Likelihood theory for the graph Ornstein-Uhlenbeck process
    Valentin Courgeau
    Almut E. D. Veraart
    Statistical Inference for Stochastic Processes, 2022, 25 : 227 - 260
  • [43] Likelihood theory for the graph Ornstein-Uhlenbeck process
    Courgeau, Valentin
    Veraart, Almut E. D.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2022, 25 (02) : 227 - 260
  • [44] Least squares estimator for Ornstein–Uhlenbeck processes driven by fractional Lévy processes from discrete observations
    Guangjun Shen
    Qian Yu
    Statistical Papers, 2019, 60 : 2253 - 2271
  • [45] Moderate Deviations for Parameter Estimation in the Fractional Ornstein-Uhlenbeck Processes with Periodic Mean
    Jiang, Hui
    Li, Shi Min
    Wang, Wei Gang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (05) : 1308 - 1324
  • [46] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    Xiao WeiLin
    Zhang WeiGuo
    Zhang XiLi
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1497 - 1511
  • [47] Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean
    Dehling H.
    Franke B.
    Woerner J.H.C.
    Statistical Inference for Stochastic Processes, 2017, 20 (1) : 1 - 14
  • [48] Minimum distance estimation for fractional Ornstein-Uhlenbeck type process
    Zaiming Liu
    Na Song
    Advances in Difference Equations, 2014
  • [49] Drift estimation for a Levy-driven Ornstein-Uhlenbeck process with heavy tails
    Gushchin, Alexander
    Pavlyukevich, Ilya
    Ritsch, Marian
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (03) : 553 - 570
  • [50] An application of Ornstein-Uhlenbeck process to commodity pricing in Thailand
    Chaiyapo, Nattiya
    Phewchean, Nattakorn
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,