Radial growth of the derivatives of analytic functions in Besov spaces

被引:1
作者
Dominguez, Salvador [1 ]
Girela, Daniel [1 ]
机构
[1] Univ Malaga, Fac Ciencias, Anal Matemat, Malaga 29071, Spain
来源
CONCRETE OPERATORS | 2020年 / 8卷 / 01期
关键词
Besov spaces; radial behaviour; multipliers; CARLESON MEASURES; INTEGRATION OPERATORS; MULTIPLIERS;
D O I
10.1515/conop-2020-0107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 1 < p < infinity, the Besov space By consists of those functions f which are analytic in the unit disc IID = {z E C : vertical bar z vertical bar < 1} and satisfy integral(D)(1 - vertical bar z vertical bar(2))(P-2)vertical bar f'(z)(p) dA(z) < infinity. The space B-2 reduces to the classical Dirichlet space D. It is known that if f is an element of D then If (rei)1 = o[(1 - r)-112], for almost every theta is an element of [0, 2 pi]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces B-p (1 < p < infinity) an we give also an application of our them to questions concerning multipliers between Besov spaces.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 33 条
  • [1] Multiplicative Isometries and Isometric Zero-Divisors
    Aleman, Alexandru
    Duren, Peter
    Martin, Maria J.
    Vukotic, Dragan
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (05): : 961 - 974
  • [2] ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
  • [3] [Anonymous], 1957, J MATH SOC JAPAN
  • [4] [Anonymous], 2007, OPERATOR THEORY FUNC
  • [5] ARAZY J, 1985, J REINE ANGEW MATH, V363, P110
  • [6] Arcozzi N, 2002, REV MAT IBEROAM, V18, P443
  • [7] A Radial Integrability Result Concerning Bounded Functions in Analytic Besov Spaces with Applications
    Dominguez, Salvador
    Girela, Daniel
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [8] Donaire JJ, 2002, J REINE ANGEW MATH, V553, P43
  • [9] On the growth and range of functions in Mobius invariant spaces
    Donaire, Juan Jesus
    Girela, Daniel
    Vukotic, Dragan
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2010, 112 : 237 - 260
  • [10] DUREN P., 2004, Bergman spaces, V100