Quantifying Chemical Structure and Machine-Learned Atomic Energies in Amorphous and Liquid Silicon

被引:39
作者
Bernstein, Noam [1 ]
Bhattarai, Bishal [2 ]
Csanyi, Gabor [3 ]
Drabold, David A. [2 ]
Elliott, Stephen R. [4 ]
Deringer, Volker L. [3 ,4 ]
机构
[1] US Naval Res Lab, Ctr Mat Phys & Technol, Washington, DC 20375 USA
[2] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
[3] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[4] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
基金
英国工程与自然科学研究理事会;
关键词
amorphous materials; computational chemistry; continuous random networks; machine learning; silicon; MOLECULAR-DYNAMICS; PHASE-TRANSITION; ORDER; DEFECTS; MODELS;
D O I
10.1002/anie.201902625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine-learning-based techniques can give new, quantitative chemical insight into the atomic-scale structure of amorphous silicon (a-Si). We combine a quantitative description of the nearest- and next-nearest-neighbor structure with a quantitative description of local stability. The analysis is applied to an ensemble of a-Si networks in which we tailor the degree of ordering by varying the quench rates down to 10(10)Ks(-1). Our approach associates coordination defects in a-Si with distinct stability regions and it has also been applied to liquid Si, where it traces a clear-cut transition in local energies during vitrification. The method is straightforward and inexpensive to apply, and therefore expected to have more general significance for developing a quantitative understanding of liquid and amorphous states of matter.
引用
收藏
页码:7057 / 7061
页数:5
相关论文
共 50 条
[11]   Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics [J].
Bonati, Luigi ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2018, 121 (26)
[12]   Reactivity of Amorphous Carbon Surfaces: Rationalizing the Role of Structural Motifs in Functionalization Using Machine Learning [J].
Caro, Miguel A. ;
Aarva, Anja ;
Deringer, Volker L. ;
Csanyi, Gabor ;
Laurila, Tomi .
CHEMISTRY OF MATERIALS, 2018, 30 (21) :7446-7455
[13]   Growth Mechanism and Origin of High sp3 Content in Tetrahedral Amorphous Carbon [J].
Caro, Miguel A. ;
Deringer, Volker L. ;
Koskinen, Jari ;
Laurila, Tomi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2018, 120 (16)
[14]   A new order parameter for tetrahedral configurations [J].
Chau, PL ;
Hardwick, AJ .
MOLECULAR PHYSICS, 1998, 93 (03) :511-518
[15]   Atomic Energies from a Convolutional Neural Network [J].
Chen, Xin ;
Jorgensen, Mathias S. ;
Li, Jun ;
Hammer, Bjork .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (07) :3933-3942
[16]   The long-wavelength limit of the structure factor of amorphous silicon and vitreous silica [J].
de Graff, Adam M. R. ;
Thorpe, M. F. .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2010, 66 :22-31
[17]   Comparing molecules and solids across structural and alchemical space [J].
De, Sandip ;
Bartok, Albert P. ;
Csanyi, Gabor ;
Ceriotti, Michele .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (20) :13754-13769
[18]   Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics [J].
Deringer, Volker L. ;
Bernstein, Noam ;
Bartok, Albert P. ;
Cliffe, Matthew J. ;
Kerber, Rachel N. ;
Marbella, Lauren E. ;
Grey, Clare P. ;
Elliott, Stephen R. ;
Csanyi, Gabor .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (11) :2879-2885
[19]   Towards an atomistic understanding of disordered carbon electrode materials [J].
Deringer, Volker L. ;
Merlet, Celine ;
Hu, Yuchen ;
Lee, Tae Hoon ;
Kattirtzi, John A. ;
Pecher, Oliver ;
Csanyi, Gabor ;
Elliott, Stephen R. ;
Grey, Clare P. .
CHEMICAL COMMUNICATIONS, 2018, 54 (47) :5988-5991
[20]   Data-Driven Learning of Total and Local Energies in Elemental Boron [J].
Deringer, Volker L. ;
Pickard, Chris J. ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2018, 120 (15)