Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum

被引:203
作者
Del Negro, Marco [1 ]
Primiceri, Giorgio E. [2 ]
机构
[1] Fed Reserve Bank New York, New York, NY 10045 USA
[2] Northwestern Univ, Dept Econ, CEPR & NBER, Evanston, IL 60208 USA
关键词
Bayesian Methods; Time-varying Volatility; VOLATILITY; MODELS;
D O I
10.1093/restud/rdv024
中图分类号
F [经济];
学科分类号
02 ;
摘要
This note shows how to apply the procedure of Kim et al. (1998) to the estimation of VAR, DSGE, factor, and unobserved components models with stochastic volatility. In particular, it revisits the estimation algorithm of the time-varying VAR model of Primiceri (2005). The main difference of the new algorithm is the ordering of the various MCMC steps, with each individual step remaining the same.
引用
收藏
页码:1342 / 1345
页数:4
相关论文
共 6 条
[1]   Getting it right: Joint distribution tests of posterior simulators [J].
Geweke, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :799-804
[2]   The time-varying volatility of macroeconomic fluctuations [J].
Justiniano, Alejandro ;
Primiceri, Giorgio E. .
AMERICAN ECONOMIC REVIEW, 2008, 98 (03) :604-641
[3]   Stochastic volatility: Likelihood inference and comparison with ARCH models [J].
Kim, S ;
Shephard, N ;
Chib, S .
REVIEW OF ECONOMIC STUDIES, 1998, 65 (03) :361-393
[4]   Time varying structural vector autoregressions and monetary policy [J].
Primiceri, GE .
REVIEW OF ECONOMIC STUDIES, 2005, 72 (03) :821-852
[5]   Why has US inflation become harder to forecast? [J].
Stock, James H. ;
Watson, Mark W. .
JOURNAL OF MONEY CREDIT AND BANKING, 2007, 39 (01) :3-33
[6]   Nonlinear state-space models with state-dependent variances [J].
Stroud, JR ;
Müller, P ;
Polson, NG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) :377-386