On a hyperbolic system arising in liquid crystals modeling

被引:30
作者
Feireisl, Eduard [1 ]
Rocca, Elisabetta [2 ]
Schimperna, Giulio [2 ]
Zarnescu, Arghir [3 ,4 ,5 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, CZ-11567 Prague 1, Czech Republic
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[3] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Bizkaia, Spain
[4] BCAM, Basque Ctr Appl Math, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[5] Romanian Acad, Simion Stoilow Inst, 21 Calea Grivitei, Bucharest 010702, Romania
基金
欧洲研究理事会;
关键词
Liquid crystal; inviscid Qian-Sheng model; dissipative solution; weak-strong uniqueness; WEAK SOLUTIONS; EQUATIONS; FLOWS;
D O I
10.1142/S0219891618500029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model of liquid crystals, based on a nonlinear hyperbolic system of differential equations, that represents an inviscid version of the model proposed by Qian and Sheng. A new concept of dissipative solution is proposed, for which a global-in-time existence theorem is shown. The dissipative solutions enjoy the following properties: (i) they exist globally in time for any finite energy initial data; (ii) dissipative solutions enjoying certain smoothness are classical solutions; (iii) a dissipative solution coincides with a strong solution originating from the same initial data as long as the latter exists.
引用
收藏
页码:15 / 35
页数:21
相关论文
共 10 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]   Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory [J].
Ball, John M. ;
Majumdar, Apala .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 525 :1-11
[3]   Global well-posedness and twist-wave solutions for the inertial Qian-Sheng model of liquid crystals [J].
De Anna, Francesco ;
Zarnescu, Arghir .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (02) :1080-1118
[4]   Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy [J].
Feireisl, Eduard ;
Schimperna, Giulio ;
Rocca, Elisabetta ;
Zarnescu, Arghir .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (05) :1269-1299
[5]   Suitable Weak Solutions to the Navier-Stokes Equations of Compressible Viscous Fluids [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Sun, Yongzhong .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) :611-631
[6]   The helicity and vorticity of liquid-crystal flows [J].
Gay-Balmaz, Francois ;
Tronci, Cesare .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2128) :1197-1213
[7]  
Lions P.-L., 1996, MATH TOPICS FLUID DY, V1
[8]   Generalized hydrodynamic equations for nematic liquid crystals [J].
Qian, TZ ;
Sheng, P .
PHYSICAL REVIEW E, 1998, 58 (06) :7475-7485
[9]   Young Measures Generated by Ideal Incompressible Fluid Flows [J].
Szekelyhidi, Laszlo, Jr. ;
Wiedemann, Emil .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (01) :333-366
[10]   Existence of weak solutions for the incompressible Euler equations [J].
Wiedemann, Emil .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05) :727-730