S&P BSE Sensex and S&P BSE IT return forecasting using ARIMA

被引:21
作者
Challa, Madhavi Latha [1 ]
Malepati, Venkataramanaiah [2 ]
Kolusu, Siva Nageswara Rao [3 ]
机构
[1] CMR Coll Engn & Technol, Dept CSE, Hyderabad, India
[2] SG Govt Degree & PG Coll, Dept Commerce, Piler, Andhra Pradesh, India
[3] Vignan Fdn Sci Technol & Res, Dept Management Studies, Guntur, Andhra Pradesh, India
关键词
Efficient market hypothesis; Bombay stock exchange; ARIMA; KPSS; S& P BSE Sensex; Forecasting; P BSE IT; CHINESE STOCK MARKETS; VARIANCE-RATIO TESTS; TIME-SERIES; LONG MEMORY; COMBINATION; HYPOTHESIS; EFFICIENT; PREMIUM; MODELS; PREDICTABILITY;
D O I
10.1186/s40854-020-00201-5
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange. To achieve the objectives, the study uses descriptive statistics; tests including variance ratio, Augmented Dickey-Fuller, Phillips-Perron, and Kwiatkowski Phillips Schmidt and Shin; and Autoregressive Integrated Moving Average (ARIMA). The analysis forecasts daily stock returns for the S&P BSE Sensex and S&P BSE IT time series, using the ARIMA model. The results reveal that the mean returns of both indices are positive but near zero. This is indicative of a regressive tendency in the long-term. The forecasted values of S&P BSE Sensex and S&P BSE IT are almost equal to their actual values, with few deviations. Hence, the ARIMA model is capable of predicting medium- or long-term horizons using historical values of S&P BSE Sensex and S&P BSE IT.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Application of the moving Lyapunov exponent to the S&P 500 index to predict major declines [J].
Tsakonas, Stefanos ;
Hanias, Michael ;
Magafas, Lykourgos ;
Zachilas, Loukas .
JOURNAL OF RISK, 2022, 24 (05) :33-49
[32]   The effectiveness of the combined use of VIX and Support Vector Machines on the prediction of S&P 500 [J].
Rosillo, Rafael ;
Giner, Javier ;
de la Fuente, David .
NEURAL COMPUTING & APPLICATIONS, 2014, 25 (02) :321-332
[33]   Intrinsic bubbles and Granger causality in the S&P 500: Evidence from long-term data [J].
Chen, An-Sing ;
Cheng, Lee-Young ;
Cheng, Kuang-Fu .
JOURNAL OF BANKING & FINANCE, 2009, 33 (12) :2275-2281
[34]   Pricing S&P 500 Index Options: A Conditional Semi-Nonparametric Approach [J].
Guidolin, Massimo ;
Hansen, Erwin .
JOURNAL OF FUTURES MARKETS, 2016, 36 (03) :217-239
[35]   A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices [J].
Shackleton, Mark B. ;
Taylor, Stephen J. ;
Yu, Peng .
JOURNAL OF BANKING & FINANCE, 2010, 34 (11) :2678-2693
[36]   Score function scaling for QAR plus Beta-t-EGARCH: an empirical application to the S&P 500 [J].
Ayala, Astrid Loretta ;
Blazsek, Szabolcs ;
Licht, Adrian .
APPLIED ECONOMICS, 2024, 56 (31) :3684-3697
[37]   A Bayesian analysis of time-varying jump risk in S&P 500 returns and options [J].
Carverhill, Andrew ;
Luo, Dan .
JOURNAL OF FINANCIAL MARKETS, 2023, 64
[38]   Does social network sentiment influence the relationship between the S&P 500 and gold returns? [J].
Pineiro-Chousa, Juan ;
Angeles Lopez-Cabarcos, M. ;
Maria Perez-Pico, Ada ;
Ribeiro-Navarrete, Belen .
INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2018, 57 :57-64
[39]   Investing in the S&P 500 index: Can anything beat the buy-and-hold strategy? [J].
Dichtl, Hubert .
REVIEW OF FINANCIAL ECONOMICS, 2020, 38 (02) :352-378
[40]   Predictability and Persistence of the Price Movements of the S&P/Case-Shiller House Price Indices [J].
Felix Schindler .
The Journal of Real Estate Finance and Economics, 2013, 46 :44-90