S&P BSE Sensex and S&P BSE IT return forecasting using ARIMA

被引:19
|
作者
Challa, Madhavi Latha [1 ]
Malepati, Venkataramanaiah [2 ]
Kolusu, Siva Nageswara Rao [3 ]
机构
[1] CMR Coll Engn & Technol, Dept CSE, Hyderabad, India
[2] SG Govt Degree & PG Coll, Dept Commerce, Piler, Andhra Pradesh, India
[3] Vignan Fdn Sci Technol & Res, Dept Management Studies, Guntur, Andhra Pradesh, India
关键词
Efficient market hypothesis; Bombay stock exchange; ARIMA; KPSS; S& P BSE Sensex; Forecasting; P BSE IT; CHINESE STOCK MARKETS; VARIANCE-RATIO TESTS; TIME-SERIES; LONG MEMORY; COMBINATION; HYPOTHESIS; EFFICIENT; PREMIUM; MODELS; PREDICTABILITY;
D O I
10.1186/s40854-020-00201-5
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange. To achieve the objectives, the study uses descriptive statistics; tests including variance ratio, Augmented Dickey-Fuller, Phillips-Perron, and Kwiatkowski Phillips Schmidt and Shin; and Autoregressive Integrated Moving Average (ARIMA). The analysis forecasts daily stock returns for the S&P BSE Sensex and S&P BSE IT time series, using the ARIMA model. The results reveal that the mean returns of both indices are positive but near zero. This is indicative of a regressive tendency in the long-term. The forecasted values of S&P BSE Sensex and S&P BSE IT are almost equal to their actual values, with few deviations. Hence, the ARIMA model is capable of predicting medium- or long-term horizons using historical values of S&P BSE Sensex and S&P BSE IT.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] S&P BSE Sensex and S&P BSE IT return forecasting using ARIMA
    Madhavi Latha Challa
    Venkataramanaiah Malepati
    Siva Nageswara Rao Kolusu
    Financial Innovation, 6
  • [2] Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex
    Challa, Madhavi Latha
    Malepati, Venkataramanaiah
    Kolusu, Siva Nageswara Rao
    FINANCIAL INNOVATION, 2018, 4 (01)
  • [3] Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex
    Madhavi Latha Challa
    Venkataramanaiah Malepati
    Siva Nageswara Rao Kolusu
    Financial Innovation, 4
  • [4] Forecasting of S&P 500 ESG Index by Using CEEMDAN and LSTM Approach
    Aggarwal, Divya
    Banerjee, Sougata
    JOURNAL OF FORECASTING, 2025, 44 (02) : 339 - 355
  • [5] The impact of extreme weather events on the S&P 500 return index
    Altin, Hakan
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING, 2024, 17 (01) : 11 - 18
  • [6] Decision trees unearth return sign predictability in the S&P 500
    Fievet, L.
    Sornette, D.
    QUANTITATIVE FINANCE, 2018, 18 (11) : 1797 - 1814
  • [7] Non Linear Analysis of S&P Index
    Hanias, Mike
    Magafas, Lykourgos
    Konstantaki, Pagania
    EQUILIBRIUM-QUARTERLY JOURNAL OF ECONOMICS AND ECONOMIC POLICY, 2013, 8 (04): : 125 - 135
  • [8] S&P 500 volatility, volatility regimes, and economic uncertainty
    Adrangi, Bahram
    Chatrath, Arjun
    Raffiee, Kambiz
    BULLETIN OF ECONOMIC RESEARCH, 2023, 75 (04) : 1362 - 1387
  • [9] Dynamic return and volatility spillovers among S&P 500, crude oil, and gold
    Balcilar, Mehmet
    Ozdemir, Zeynel Abidin
    Ozdemir, Huseyin
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2021, 26 (01) : 153 - 170
  • [10] Using neural networks to forecast the S&P 100 implied volatility
    Malliaris, M
    Salchenberger, L
    NEUROCOMPUTING, 1996, 10 (02) : 183 - 195