Tumour Stroma Ratio Assessment Using Digital Image Analysis Predicts Survival in Triple Negative and Luminal Breast Cancer

被引:54
作者
Millar, Ewan K. A. [1 ,2 ,3 ]
Browne, Lois H. [4 ]
Beretov, Julia [1 ,2 ,4 ]
Lee, Kirsty [5 ]
Lynch, Jodi [4 ]
Swarbrick, Alexander [6 ,7 ,8 ]
Graham, Peter H. [2 ,4 ]
机构
[1] St George Hosp, New South Wales Hlth Pathol, Dept Anat Pathol, Kogarah, NSW 2217, Australia
[2] Univ New South Wales Sydney, St George & Sutherland Clin Sch, Kensington, NSW 2052, Australia
[3] Sydney Western Univ Campbelltown, Fac Med & Hlth Sci, Campbelltown, NSW 2560, Australia
[4] St George Hosp, Canc Care Ctr, Kogarah, NSW 2217, Australia
[5] Chinese Univ Hong Kong, Prince Wales Hosp, Dept Clin Oncol, Shatin, Hong Kong, Peoples R China
[6] Garvan Inst Med Res, 370 Victoria St, Darlinghurst, NSW 2010, Australia
[7] Kinghorn Canc Ctr, 370 Victoria St, Sydney, NSW 2010, Australia
[8] Univ New South Wales, St Vincents Clin Sch, Sydney, NSW 2010, Australia
关键词
breast cancer; biomarker; image analysis; machine learning; prognosis; PROGNOSTIC VALUE; INFILTRATING LYMPHOCYTES; CHEMOTHERAPY; CARCINOMA; CELLS;
D O I
10.3390/cancers12123749
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Tumour stroma is known to predict outcome and play an important role in the growth and spread of solid tumours and their response to therapy. In breast cancer, there is evidence that the tumour stroma ratio (TSR) can predict outcome in aggressive triple negative breast cancer, but its value for the more common hormone receptor positive breast cancer is unclear. Using computerised image analysis and machine learning algorithms, we show that TSR is an important factor in predicting outcome for triple negative disease and hormone receptor positive cancer. However, its influence on good or poor outcome appears to depend on tumour type and the relative predominance of the stromal component. By better understanding the role of the tumour stroma in cancer growth, and its response to treatment, this study may help support the role of TSR as a new prognostic marker for breast cancer to guide clinical decision making. We aimed to determine the clinical significance of tumour stroma ratio (TSR) in luminal and triple negative breast cancer (TNBC) using digital image analysis and machine learning algorithms. Automated image analysis using QuPath software was applied to a cohort of 647 breast cancer patients (403 luminal and 244 TNBC) using digital H&E images of tissue microarrays (TMAs). Kaplan-Meier and Cox proportional hazards were used to ascertain relationships with overall survival (OS) and breast cancer specific survival (BCSS). For TNBC, low TSR (high stroma) was associated with poor prognosis for both OS (HR 1.9, CI 1.1-3.3, p = 0.021) and BCSS (HR 2.6, HR 1.3-5.4, p = 0.007) in multivariate models, independent of age, size, grade, sTILs, lymph nodal status and chemotherapy. However, for luminal tumours, low TSR (high stroma) was associated with a favourable prognosis in MVA for OS (HR 0.6, CI 0.4-0.8, p = 0.001) but not for BCSS. TSR is a prognostic factor of most significance in TNBC, but also in luminal breast cancer, and can be reliably assessed using quantitative image analysis of TMAs. Further investigation into the contribution of tumour subtype stromal phenotype may further refine these findings.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 47 条
[1]  
[Anonymous], 2020, DIAGNOSTICS
[2]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[3]   Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing [J].
Bartoschek, Michael ;
Oskolkov, Nikolay ;
Bocci, Matteo ;
Lovrot, John ;
Larsson, Christer ;
Sommarin, Mikael ;
Madsen, Chris D. ;
Lindgren, David ;
Pekar, Gyula ;
Karlsson, Goran ;
Ringner, Markus ;
Bergh, Jonas ;
Bjorklund, Asa ;
Pietras, Kristian .
NATURE COMMUNICATIONS, 2018, 9
[4]   Proteomics for Breast Cancer Urine Biomarkers [J].
Beretov, Julia ;
Wasinger, Valerie C. ;
Graham, Peter H. ;
Millar, Ewan K. ;
Kearsley, John H. ;
Li, Yong .
ADVANCES IN CLINICAL CHEMISTRY, VOL 63, 2014, 63 :123-167
[5]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[6]   Fibroblast Subtypes Regulate Responsiveness of Luminal Breast Cancer to Estrogen [J].
Brechbuhl, Heather M. ;
Finlay-Schultz, Jessica ;
Yamamoto, Tomomi M. ;
Gillen, Austin E. ;
Cittelly, Diana M. ;
Tan, Aik-Choon ;
Sams, Sharon B. ;
Pillai, Manoj M. ;
Elias, Anthony D. ;
Robinson, William A. ;
Sartorius, Carol A. ;
Kabos, Peter .
CLINICAL CANCER RESEARCH, 2017, 23 (07) :1710-1721
[7]  
Bredfeldt Jeremy S, 2014, J Pathol Inform, V5, P28, DOI 10.4103/2153-3539.139707
[8]   Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer [J].
Cazet, Aurelie S. ;
Hui, Mun N. ;
Elsworth, Benjamin L. ;
Wu, Sunny Z. ;
Roden, Daniel ;
Chan, Chia-Ling ;
Skhinas, Joanna N. ;
Collot, Raphael ;
Yang, Jessica ;
Harvey, Kate ;
Johan, M. Zahied ;
Cooper, Caroline ;
Nair, Radhika ;
Herrmann, David ;
McFarland, Andrea ;
Deng, Niantao ;
Ruiz-Borrego, Manuel ;
Rojo, Federico ;
Trigo, Jose M. ;
Bezares, Susana ;
Caballero, Rosalia ;
Lim, Elgene ;
Timpson, Paul ;
O'Toole, Sandra ;
Watkins, D. Neil ;
Cox, Thomas R. ;
Samuel, Michael S. ;
Martin, Miguel ;
Swarbrick, Alexander .
NATURE COMMUNICATIONS, 2018, 9
[9]   Turning foes to friends: targeting cancer-associated fibroblasts [J].
Chen, Xueman ;
Song, Erwei .
NATURE REVIEWS DRUG DISCOVERY, 2019, 18 (02) :99-115
[10]   Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients [J].
de Kruijf, Esther M. ;
van Nes, Johanna G. H. ;
de Velde, Cornelis J. H. van ;
Putter, Hein ;
Smit, Vincent T. H. B. M. ;
Liefers, Gerrit Jan ;
Kuppen, Peter J. K. ;
Tollenaar, Rob A. E. M. ;
Mesker, Wilma E. .
BREAST CANCER RESEARCH AND TREATMENT, 2011, 125 (03) :687-696