DNA nanotechnology-enabled biosensors

被引:130
作者
Chao, Jie [1 ,2 ,3 ,4 ]
Zhu, Dan [3 ,4 ]
Zhang, Yinan [3 ,4 ]
Wang, Lianhui [1 ,2 ]
Fan, Chunhai [3 ,4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Key Lab Organ Elect & Informat Displays, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, IAM, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Nanjing 210023, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Div Phys Biol, Shanghai 201800, Peoples R China
[4] Chinese Acad Sci, CAS Key Lab Interfacial Phys & Technol, Shanghai Inst Appl Phys, Bioimaging Ctr,Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA-enabled biosensors; DNA nanostructures; DNA dynamic devices; ROLLING-CIRCLE AMPLIFICATION; HYBRIDIZATION CHAIN-REACTION; SEQUENCE-SPECIFIC DETECTION; PROSTATE-SPECIFIC ANTIGEN; CREATE NANOSCALE SHAPES; NUCLEIC-ACIDS; PHOTOELECTROCHEMICAL BIOSENSOR; ELECTROCHEMICAL BIOSENSOR; INTRACELLULAR DELIVERY; BRANCHED JUNCTIONS;
D O I
10.1016/j.bios.2015.07.007
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and fiinctionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 79
页数:12
相关论文
共 103 条
[31]   AN IMMOBILE NUCLEIC-ACID JUNCTION CONSTRUCTED FROM OLIGONUCLEOTIDES [J].
KALLENBACH, NR ;
MA, RI ;
SEEMAN, NC .
NATURE, 1983, 305 (5937) :829-831
[32]   Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays [J].
Ke, Yonggang ;
Lindsay, Stuart ;
Chang, Yung ;
Liu, Yan ;
Yan, Hao .
SCIENCE, 2008, 319 (5860) :180-183
[33]   Three-Dimensional Structures Self-Assembled from DNA Bricks [J].
Ke, Yonggang ;
Ong, Luvena L. ;
Shih, William M. ;
Yin, Peng .
SCIENCE, 2012, 338 (6111) :1177-1183
[34]   Nucleic Acid Based Molecular Devices [J].
Krishnan, Yamuna ;
Simmel, Friedrich C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (14) :3124-3156
[35]   Six-helix and eight-helix DNA nanotubes assembled from half-tubes [J].
Kuzuya, Akinori ;
Wang, Risheng ;
Sha, Ruojie ;
Seeman, Nadrian C. .
NANO LETTERS, 2007, 7 (06) :1757-1763
[36]  
Lee J, 2012, NAT NANOTECHNOL, V7, P816, DOI [10.1038/nnano.2012.211, 10.1038/NNANO.2012.211]
[37]   Self-Assembled Multivalent DNA Nanostructures for Noninvasive Intracellular Delivery of Immunostimulatory CpG Oligonucleotides [J].
Li, Jiang ;
Pei, Hao ;
Zhu, Bing ;
Liang, Le ;
Wei, Min ;
He, Yao ;
Chen, Nan ;
Li, Di ;
Huang, Qing ;
Fan, Chunhai .
ACS NANO, 2011, 5 (11) :8783-8789
[38]   Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine [J].
Li, Kun ;
Qin, Weiwei ;
Li, Fan ;
Zhao, Xingchun ;
Jiang, Bowei ;
Wang, Kun ;
Deng, Suhui ;
Fan, Chunhai ;
Li, Di .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (44) :11542-11545
[39]   Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells [J].
Liang, Le ;
Li, Jiang ;
Li, Qian ;
Huang, Qing ;
Shi, Jiye ;
Yan, Hao ;
Fan, Chunhai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (30) :7745-7750
[40]  
Liedl T, 2010, NAT NANOTECHNOL, V5, P520, DOI [10.1038/NNANO.2010.107, 10.1038/nnano.2010.107]