Is NSGA-II Ready for Large-Scale Multi-Objective Optimization?

被引:9
作者
Nebro, Antonio J. [1 ,2 ]
Galeano-Brajones, Jesus [3 ]
Luna, Francisco [1 ,2 ]
Coello Coello, Carlos A. [4 ]
机构
[1] Univ Malaga, ITIS Software, Ada Byron Res Bldg, Malaga 29071, Spain
[2] Univ Malaga, Dept Lenguajes & Ciencias Comp, ETS Ingn Informat, Malaga 29071, Spain
[3] Univ Extremadura, Ctr Univ Merida, Dept Ingn Sistemas Informat & Telemat, Badajoz 06800, Spain
[4] CINVESTAV IPN, Evolutionary Computat Grp, Ciudad De Mexico 07360, Mexico
关键词
NSGA-II; auto-configuration and auto-design of metaheuristics; large-scale multi-objective optimization; real-world problems optimization; ALGORITHM; NETWORKS;
D O I
10.3390/mca27060103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
NSGA-II is, by far, the most popular metaheuristic that has been adopted for solving multi-objective optimization problems. However, its most common usage, particularly when dealing with continuous problems, is circumscribed to a standard algorithmic configuration similar to the one described in its seminal paper. In this work, our aim is to show that the performance of NSGA-II, when properly configured, can be significantly improved in the context of large-scale optimization. It leverages a combination of tools for automated algorithmic tuning called irace, and a highly configurable version of NSGA-II available in the jMetal framework. Two scenarios are devised: first, by solving the Zitzler-Deb-Thiele (ZDT) test problems, and second, when dealing with a binary real-world problem of the telecommunications domain. Our experiments reveal that an auto-configured version of NSGA-II can properly address test problems ZDT1 and ZDT2 with up to 2(17)=131,072 decision variables. The same methodology, when applied to the telecommunications problem, shows that significant improvements can be obtained with respect to the original NSGA-II algorithm when solving problems with thousands of bits.
引用
收藏
页数:17
相关论文
共 32 条
  • [1] Fine-tuning of algorithms using fractional experimental designs and local search
    Adenso-Díaz, B
    Laguna, M
    [J]. OPERATIONS RESEARCH, 2006, 54 (01) : 99 - 114
  • [2] Becerra D, 2010, IEEE INT C BIOINFORM, P137, DOI 10.1109/BIBM.2010.5706552
  • [3] Automatically Designing State-of-the-Art Multi- and Many-Objective Evolutionary Algorithms
    Bezerra, Leonardo C. T.
    Lopez-Ibanez, Manuel
    Stutzle, Thomas
    [J]. EVOLUTIONARY COMPUTATION, 2020, 28 (02) : 195 - 226
  • [4] Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms
    Bezerra, Leonardo C. T.
    Lopez-Ibanez, Manuel
    Stutzle, Thomas
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (03) : 403 - 417
  • [5] MO-ParamILS: A Multi-objective Automatic Algorithm Configuration Framework
    Blot, Aymeric
    Hoos, Holger H.
    Jourdan, Laetitia
    Kessaci-Marmion, Marie-Eleonore
    Trautmann, Heike
    [J]. LEARNING AND INTELLIGENT OPTIMIZATION (LION 10), 2016, 10079 : 32 - 47
  • [6] How to Meet Increased Capacities by Future Green 5G Networks: A Survey
    Bohli, Afef
    Bouallegue, Ridha
    [J]. IEEE ACCESS, 2019, 7 : 42220 - 42237
  • [7] Deb K, 2004, ADV INFO KNOW PROC, P105
  • [8] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [9] jMetal: A Java']Java framework for multi-objective optimization
    Durillo, Juan J.
    Nebro, Antonio J.
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (10) : 760 - 771
  • [10] A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems
    Durillo, Juan J.
    Nebro, Antonio J.
    Coello Coello, Carlos A.
    Garcia-Nieto, Jose
    Luna, Francisco
    Alba, Enrique
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (04) : 618 - 635