Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing-Holmes type chaotic oscillators

被引:62
|
作者
Kengne, J. [1 ]
Tabekoueng, Z. Njitacke [1 ,2 ]
Fotsin, H. B. [2 ]
机构
[1] Univ Dschang, Dept Elect Engn, IUT FV Bandjoun, LAIA, Dschang, Cameroon
[2] Univ Dschang, Dept Phys, Lab Elect & Signal Proc, POB 67, Dschang, Cameroon
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2016年 / 36卷
关键词
Autonomous third-order Duffing-Holmes oscillator; Mathematical modeling; Symmetry restoring crisis; Multiple attractors; ELECTRONIC-CIRCUITS; DIODE; SYNCHRONIZATION; FEEDBACK; MODEL;
D O I
10.1016/j.cnsns.2015.11.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perform a systematic analysis of a system consisting of an autonomous third order Duffing Holmes type chaotic oscillator recently introduced by Tamasevicius et al. (2009). In this type of oscillators, the symmetrical characteristics of the nonlinear component necessary for generating chaotic oscillations is synthesized by using a pair of semiconductor diodes connected in anti-parallel. Based on the Shockley diode equation and a judicious choice of state variables, we derive a smooth mathematical model (involving hyperbolic sine and cosine functions) for a better description of both the regular and chaotic dynamics of the oscillator. The bifurcation analysis shows that chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. More interestingly, some regions of the parameter space corresponding to the coexistence of multiple attractors (e.g. coexistence of four different at tractors for the same values of system parameters) are discovered. This striking phenomenon is unique and has not yet been reported previously in an electrical circuit (the universal Chua's circuit included, in spite the immense amount of related research work), and thus represents a meaningful contribution to the understanding of the behavior of nonlinear dynamical systems in general. Some PSpice simulations of the nonlinear dynamics of the oscillator are carried out to verify the theoretical analysis. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 10 条
  • [1] Autonomous Third-Order Duffing-Holmes Type Chaotic Oscillator
    Lindberg, Erik
    Tamaseviciute, Elena
    Mykolaitis, Gytis
    Bumeliene, Skaidra
    Pyragiene, Tatjana
    Tamasevicius, Arunas
    Kirvaitis, Raimundas
    2009 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1 AND 2, 2009, : 663 - +
  • [2] Autonomous Duffing-Holmes Type Chaotic Oscillator
    Tamasevicius, A.
    Bumeliene, S.
    Kirvaitis, R.
    Mykolaitis, G.
    Tamaseviciute, E.
    Lindberg, E.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2009, (05) : 43 - 46
  • [3] Adaptive, nonlinear control of a third-order Duffing-Holmes type chaotic oscillator
    Kabzinski, Jacek
    Mosiolek, Przemyslaw
    2019 24TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2019, : 127 - 132
  • [4] Coexistence of Multiple Attractors and Crisis Route to Chaos in a Novel Chaotic Jerk Circuit
    Kengne, J.
    Njitacke, Z. T.
    Negou, A. Nguomkam
    Tsostop, M. Fouodji
    Fotsin, H. B.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (05):
  • [5] Effects of Symmetric and Asymmetric Nonlinearity on the Dynamics of a Third-Order Autonomous Duffing-Holmes Oscillator
    Doubla, Isaac Sami
    Kengne, Jacques
    Wafo Tekam, Raoul Blaise
    Tabekoueng Njitacke, Zeric
    Sanjong Dagang, Clotaire Thierry
    COMPLEXITY, 2020, 2020
  • [6] Coexistence of multiple attractors and crisis route to chaos in a novel. memristive diode bidge-based Jerk circuit
    Njitacke, Z. T.
    Kengne, J.
    Fotsin, H. B.
    Negou, A. Nguomkam
    Tchiotsop, D.
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 180 - 197
  • [7] Coexistence of attractors in autonomous Van der Pol–Duffing jerk oscillator: Analysis, chaos control and synchronisation in its fractional-order form
    Victor Kamdoum Tamba
    Sifeu Takougang Kingni
    Gaetan Fautso Kuiate
    Hilaire Bertrand Fotsin
    Pierre Kisito Talla
    Pramana, 2018, 91
  • [8] Coexistence of attractors in autonomous Van der Pol-Duffing jerk oscillator: Analysis, chaos control and synchronisation in its fractional-order form
    Tamba, Victor Kamdoum
    Kingni, Sifeu Takougang
    Kuiate, Gaetan Fautso
    Fotsin, Hilaire Bertrand
    Talla, Pierre Kisito
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (01):
  • [9] Crisis event, hysteretic dynamics inducing coexistence of attractors and transient chaos in an autonomous RC hyperjerk like-chaotic circuit with cubic nonlinearity
    Tamba, V. Kamdoum
    Feudjio, E. R.
    Tagne, F. Kapche
    Fankam, J. Noumbissie
    Fotsin, H. B.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (6-7): : 1189 - 1210
  • [10] Crisis event, hysteretic dynamics inducing coexistence of attractors and transient chaos in an autonomous RC hyperjerk like-chaotic circuit with cubic nonlinearity
    V. Kamdoum Tamba
    E. R. Feudjio
    F. Kapche Tagne
    J. Noumbissie Fankam
    H. B. Fotsin
    The European Physical Journal Special Topics, 2020, 229 : 1189 - 1210