Rank theorems of operators between Banach spaces

被引:13
作者
Ma, J [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 2000年 / 43卷 / 01期
基金
中国国家自然科学基金;
关键词
rank theorem; generalized inverse; operator-value map;
D O I
10.1007/BF02903841
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E and F be Banach spaces, and B(E, F) all of bounded linear operators on E into F. Let T(0)is an element of B(E, F) with an outer inverse T-0(#) is an element of B( F, E). Then a characteristic condition of S =(I + T-0(#)(T - T-0))(-1) T-0(#) with T is an element of B(E, F) and parallel to T-0(#) (T- T-0) parallel to < 1, being a generalized inverse of T, is presented, and hence, a rank theorem of operators on E into F is established (which generalizes the rank theorem of matrices to Banach spaces). Consequently, an improved finite rank theorem and a new rank theorem are deduced. These results will be very useful to nonlinear functional analysis.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 8 条
[1]  
JIPU M, 1999, CHINESE ANN MATH B, V20, P57
[2]  
JIPU M, 1990, SCI CHINA SER A, V33, P1294
[3]  
Kato T., 1984, PERTURBATION THEORY
[4]  
MA JP, 1992, CHINESE ANN MATH B, V13, P251
[5]  
Ma JP, 1996, SCI CHINA SER A, V39, P1258
[6]   Generalized indices of operators in B(H) [J].
Ma, JP .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (12) :1233-1238
[7]  
Nashed M., 1976, Generalized inverses and applications
[8]   CONVERGENCE OF NEWTON-LIKE METHODS FOR SINGULAR OPERATOR-EQUATIONS USING OUTER INVERSES [J].
NASHED, MZ ;
CHEN, X .
NUMERISCHE MATHEMATIK, 1993, 66 (02) :235-257