UNIQUENESS OF WEAK SOLUTIONS TO A MODEL OF ELECTRO-KINETIC FLUID

被引:0
作者
Fan, Jishan [1 ,2 ]
Gao, Hongjun [1 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R China
[2] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
[3] Nanjing Univ, Ctr Nonlinear Sci, Nanjing 210093, Peoples R China
关键词
Uniqueness; weak solution; electro-kinetic fluid; EQUATIONS; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the uniqueness of weak solutions to a model of electro-kinetic fluid which consists of a momentum equation together with transport equations of charges. Our result is new in that it hold seven when the momentum vanishes. The existence of weak solutions has been proved in [P. Biler, W. Hebisch and T. Nadzieja, Nonlinear Anal. TMA, 23, 1189-1209, 1994], [R. Ryham, C. Liu and Z-Q. Wang, Preprint, 2005], [R. Ryham, arXiv: 0810.2064 v1 (math.AP) 12, Oct 2008].
引用
收藏
页码:411 / 421
页数:11
相关论文
共 18 条
[1]   Induced-charge electrokinetic phenomena: Theory and microfluidic applications [J].
Bazant, MZ ;
Squires, TM .
PHYSICAL REVIEW LETTERS, 2004, 92 (06) :661011-661014
[2]   A spectral theory for small-amplitude miscible fingering [J].
Ben, YX ;
Demekhin, EA ;
Chang, HC .
PHYSICS OF FLUIDS, 2002, 14 (03) :999-1010
[3]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[4]   WEAK SOLUTIONS OF 2-D INCOMPRESSIBLE EULER EQUATIONS [J].
CHAE, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (05) :629-638
[5]   Electrochemical thin films at and above the classical limiting current [J].
Chu, KT ;
Bazant, MZ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1485-1505
[6]   Uniqueness for some Leray-Hopf solutions to the Navier-Stokes equations [J].
Dubois, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) :99-147
[7]   Global solutions of the time-dependent drift-diffusion semiconductor equations [J].
Fang, WF ;
Ito, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (02) :523-566
[8]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35
[9]   Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation [J].
Kurokiba, Masaki ;
Ogawa, Takayoshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1052-1067
[10]  
Problestein R., 1994, PHYSICOCHEMICAL HYDR