STOCHASTIC SOLUTIONS TO THE NON-LINEAR SCHRODINGER EQUATION IN OPTICAL FIBER

被引:3
作者
Almutairi, Abdulwahab [1 ]
机构
[1] Qassim Univ, Coll Sci & Arts Unaizah, Sch Math, Qasim, Saudi Arabia
来源
THERMAL SCIENCE | 2022年 / 26卷 / SpecialIssue1期
关键词
Schrodinger problem; unified solver; optical fiber; geometric distribution and exponential distribution; SOLITON-SOLUTIONS;
D O I
10.2298/TSCI22S1185A
中图分类号
O414.1 [热力学];
学科分类号
摘要
The non-linear random Schrodinger equation via geometric distribution and exponential distribution is considered. We carry out the unified solver technique to obtain some new random solutions. The statistical distributions are utilized to show the dispersion random input. The reported random solutions are so important in fiber optics and their applications. The expectation for the random solutions are drawn to show the behaviour of solutions.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
[41]   Stability satisfied numerical approximates to the non-analytical solutions of the cubic Schrodinger equation [J].
Korkmaz, Alper .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 :210-231
[42]   NODAL SOLUTIONS FOR A QUASILINEAR SCHRODINGER EQUATION WITH CRITICAL NONLINEARITY AND NON-SQUARE DIFFUSION [J].
Deng, Yinbin ;
Li, Yi ;
Yan, Xiujuan .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (06) :2487-2508
[43]   Ground State Solutions for a Quasilinear Schrodinger Equation [J].
Zhang, Jian ;
Lin, Xiaoyan ;
Tang, Xianhua .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
[44]   Multiple Solutions for a Quasilinear Schrodinger Equation on RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
ACTA APPLICANDAE MATHEMATICAE, 2015, 136 (01) :91-117
[45]   Existence of positive solutions for a quasilinear Schrodinger equation [J].
Chu, Changmu ;
Liu, Haidong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 :118-127
[46]   Multiplicity of Solutions for a Sublinear Quasilinear Schrodinger Equation [J].
Bao, Gui ;
Cheng, Tingzhi .
TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (05) :1249-1258
[47]   Positive solutions for a critical quasilinear Schrodinger equation [J].
Xue, Liang ;
Xu, Jiafa ;
O'Regan, Donal .
AIMS MATHEMATICS, 2023, 8 (08) :19566-19581
[48]   Breather-to-soliton transition for a sixth-order nonlinear Schrodinger equation in an optical fiber [J].
Huang, Qian-Min ;
Gao, Yi-Tian ;
Hu, Lei .
APPLIED MATHEMATICS LETTERS, 2018, 75 :135-140
[49]   Inverse scattering transforms for non-local reverse-space matrix non-linear Schrodinger equations [J].
Ma, Wen-Xiu ;
Huang, Yehui ;
Wang, Fudong .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2022, 33 (06) :1062-1082
[50]   A generalized sub-equation expansion method and its application to the nonlinear Schrodinger equation in inhomogeneous optical fiber media [J].
Li, Biao .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (07) :1187-1201