STOCHASTIC SOLUTIONS TO THE NON-LINEAR SCHRODINGER EQUATION IN OPTICAL FIBER

被引:3
作者
Almutairi, Abdulwahab [1 ]
机构
[1] Qassim Univ, Coll Sci & Arts Unaizah, Sch Math, Qasim, Saudi Arabia
来源
THERMAL SCIENCE | 2022年 / 26卷 / SpecialIssue1期
关键词
Schrodinger problem; unified solver; optical fiber; geometric distribution and exponential distribution; SOLITON-SOLUTIONS;
D O I
10.2298/TSCI22S1185A
中图分类号
O414.1 [热力学];
学科分类号
摘要
The non-linear random Schrodinger equation via geometric distribution and exponential distribution is considered. We carry out the unified solver technique to obtain some new random solutions. The statistical distributions are utilized to show the dispersion random input. The reported random solutions are so important in fiber optics and their applications. The expectation for the random solutions are drawn to show the behaviour of solutions.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
[21]   Soliton solutions to the nonlocal non-isospectral nonlinear Schrodinger equation [J].
Feng, Wei ;
Zhao, Song-Lin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (25)
[22]   Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation [J].
Albosaily, Sahar ;
Mohammed, Wael W. ;
Aiyashi, Mohammed A. ;
Abdelrahman, Mahmoud A. E. .
SYMMETRY-BASEL, 2020, 12 (11) :1-12
[23]   Dark three-soliton for a nonlinear Schrodinger equation in inhomogeneous optical fiber [J].
Zhao, Jianbo ;
Luan, Zitong ;
Zhang, Pei ;
Dai, Chaoqing ;
Biswas, Anjan ;
Liu, Wenjun ;
Kudryashov, Nikolay A. .
OPTIK, 2020, 220 (220)
[24]   Bilinear forms and soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrodinger equation in an optical fiber [J].
Wang, Dong ;
Gao, Yi-Tian ;
Su, Jing-Jing ;
Ding, Cui-Cui .
MODERN PHYSICS LETTERS B, 2020, 34 (30)
[25]   Integration of a non-linear Hirota type equation with additional terms [J].
Khasanov, A. B. ;
Eshbekov, R. Kh. ;
Hasanov, T. G. .
IZVESTIYA MATHEMATICS, 2025, 89 (01) :196-219
[26]   Non-linear Dynamics and Exact Solutions for the Variable-Coefficient Modified Korteweg-de Vries Equation [J].
Liu, Jiangen ;
Zhang, Yufeng .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (02) :143-149
[27]   Multiple solutions for a quasilinear Schrodinger equation [J].
Fang, Xiang-Dong ;
Szulkin, Andrzej .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :2015-2032
[28]   The Nth-order bright and dark solitons for the higher-order nonlinear Schrodinger equation in an optical fiber [J].
Su, Jing-Jing ;
Gao, Yi-Tian .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 120 :697-719
[29]   MULTIPLE NORMALIZED SOLUTIONS FOR A QUASI-LINEAR SCHRODINGER EQUATION VIA DUAL APPROACH [J].
Zhang, Lin ;
Li, Yongqing ;
Wang, Zhi-qiang .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (01) :465-489
[30]   Infinitely many radial and non-radial solutions to a quasilinear Schrodinger equation [J].
Yang, Xianyong ;
Wang, Wenbo ;
Zhao, Fukun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 114 :158-168