STOCHASTIC SOLUTIONS TO THE NON-LINEAR SCHRODINGER EQUATION IN OPTICAL FIBER

被引:3
作者
Almutairi, Abdulwahab [1 ]
机构
[1] Qassim Univ, Coll Sci & Arts Unaizah, Sch Math, Qasim, Saudi Arabia
来源
THERMAL SCIENCE | 2022年 / 26卷 / SpecialIssue1期
关键词
Schrodinger problem; unified solver; optical fiber; geometric distribution and exponential distribution; SOLITON-SOLUTIONS;
D O I
10.2298/TSCI22S1185A
中图分类号
O414.1 [热力学];
学科分类号
摘要
The non-linear random Schrodinger equation via geometric distribution and exponential distribution is considered. We carry out the unified solver technique to obtain some new random solutions. The statistical distributions are utilized to show the dispersion random input. The reported random solutions are so important in fiber optics and their applications. The expectation for the random solutions are drawn to show the behaviour of solutions.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
  • [21] Soliton solutions to the nonlocal non-isospectral nonlinear Schrodinger equation
    Feng, Wei
    Zhao, Song-Lin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (25):
  • [22] Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Aiyashi, Mohammed A.
    Abdelrahman, Mahmoud A. E.
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [23] Dark three-soliton for a nonlinear Schrodinger equation in inhomogeneous optical fiber
    Zhao, Jianbo
    Luan, Zitong
    Zhang, Pei
    Dai, Chaoqing
    Biswas, Anjan
    Liu, Wenjun
    Kudryashov, Nikolay A.
    OPTIK, 2020, 220 (220):
  • [24] Bilinear forms and soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Wang, Dong
    Gao, Yi-Tian
    Su, Jing-Jing
    Ding, Cui-Cui
    MODERN PHYSICS LETTERS B, 2020, 34 (30):
  • [25] Integration of a non-linear Hirota type equation with additional terms
    Khasanov, A. B.
    Eshbekov, R. Kh.
    Hasanov, T. G.
    IZVESTIYA MATHEMATICS, 2025, 89 (01) : 196 - 219
  • [26] Non-linear Dynamics and Exact Solutions for the Variable-Coefficient Modified Korteweg-de Vries Equation
    Liu, Jiangen
    Zhang, Yufeng
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (02): : 143 - 149
  • [27] Multiple solutions for a quasilinear Schrodinger equation
    Fang, Xiang-Dong
    Szulkin, Andrzej
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) : 2015 - 2032
  • [28] The Nth-order bright and dark solitons for the higher-order nonlinear Schrodinger equation in an optical fiber
    Su, Jing-Jing
    Gao, Yi-Tian
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 120 : 697 - 719
  • [29] MULTIPLE NORMALIZED SOLUTIONS FOR A QUASI-LINEAR SCHRODINGER EQUATION VIA DUAL APPROACH
    Zhang, Lin
    Li, Yongqing
    Wang, Zhi-qiang
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (01) : 465 - 489
  • [30] Infinitely many radial and non-radial solutions to a quasilinear Schrodinger equation
    Yang, Xianyong
    Wang, Wenbo
    Zhao, Fukun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 114 : 158 - 168