The synergistic role of silica nanoparticle and anionic surfactant on the static and dynamic CO2 foam stability for enhanced heavy oil recovery: An experimental study

被引:78
|
作者
Zhao, Jing [1 ]
Torabi, Farshid [1 ]
Yang, Jun [1 ]
机构
[1] Univ Regina, Petr Syst Engn, Regina, SK S4S 0A2, Canada
关键词
CO2; Foam; Silica nanoparticle; Heavy oil recovery; Interfacial tension; Micromodel studies; CARBONATED WATER INJECTION; GRAFTED NANO-CELLULOSE; INTERFACIAL PROPERTIES; AQUEOUS FOAMS; POROUS-MEDIA; WETTABILITY; MECHANISMS; PARTICLES; ABSENCE;
D O I
10.1016/j.fuel.2020.119443
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2 foam is a promising candidate in enhanced oil recovery and reducing anthropogenic CO2 emission through geo-sequestration due to its CO2 mobility control ability. However, instability of CO2 foam stabilized solely by surfactant strongly retards its application. Here, two types of silica nanoparticles (NPs) with varied hydrophobicity are used with sodium bis(2-ethylhexyl) sulfosuccinate (AOT) to increase CO2 foam stability. Through foamability and foam stability experiments, together with complementary experiments such as measurements of CO2-water interfacial tensions, particle zeta potential, and adsorption isotherm of surfactant, the stabilization mechanisms of AOT-NPs aqueous dispersions on the CO2 foam films are revealed. Oil recovery experiments are performed in an oil-wet micromodel where high permeability channels are included to mimic wormholes in unconsolidated sandstone reservoirs during sand production. Results show that the nanoparticle surface hydrophobicity strongly influences the interactions between particles and AOT. Partially hydrophobic NPs (NPB) are much more efficient in generating and stabilizing CO2 foam than hydrophilic NPs (NPA) when mixed with AOT in a proportion of 1: 0.16 (wt%/wt%). AOT-NPB dispersions improve the recovery in two aspects: First, the synergistic interactions between AOT and NPB leads to the adsorption of AOT on particle surfaces, thus enhancing mechanical strength of bubbles. High quality foam encompasses a fine foam texture and provides higher resistance to the gas flow, leading to a more uniform sweep. Second, AOT-NPB dispersions reduces oil/water IFT, promotes emulsification forming oil in water (O/W) emulsions, and alters glass surface wettability, leading to substantial incremental oil recovery.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Experimental study of CO2 solubility on the oil recovery enhancement of heavy oil reservoirs
    Davarpanah, Afshin
    Mirshekari, Behnam
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (02) : 1161 - 1169
  • [32] The Incorporation of Silica Nanoparticle and Alpha Olefin Sulphonate in Aqueous CO2 Foam: Investigation of Foaming Behavior and Synergistic Effect
    AttarHamed, F.
    Zoveidavianpoor, M.
    Jalilavi, M.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2014, 32 (21) : 2549 - 2558
  • [33] Enhanced heavy oil recovery via surfactant-assisted CO2 huff-n-puff processes
    Li, Binfei
    Zhang, Qiliang
    Li, Songyan
    Li, Zhaomin
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 159 : 25 - 34
  • [34] An Evaluation of Graphene Oxides as Possible Foam Stabilizing Agents for CO2 Based Enhanced Oil Recovery
    Barrabino, Albert
    Holt, Torleif
    Lindeberg, Erik
    NANOMATERIALS, 2018, 8 (08):
  • [35] Assessing the effects of different gas types on stability of SiO2 nanoparticle foam for enhanced oil recovery purpose
    Harati, Saeed
    Bayat, Ali Esfandyari
    Sarvestani, Mohammad Taghizadeh
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 313
  • [36] A Review on CO2 Foam for Mobility Control: Enhanced Oil Recovery
    Ahmed, Shehzad
    Elraies, Khaled Abdalla
    Tan, Isa M.
    Mumtaz, Mudassar
    ICIPEG 2016: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTEGRATED PETROLEUM ENGINEERING AND GEOSCIENCES, 2017, : 205 - 215
  • [37] Advances and challenges in CO2 foam technologies for enhanced oil recovery in carbonate reservoirs
    Jian, Guoqing
    Fernandez, Carlos A.
    Puerto, Maura
    Sarathi, Ramesh
    Bonneville, Alain
    Biswal, Sibani Lisa
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 202
  • [38] Nanoparticle and Surfactant Stabilized Carbonated Water Induced In-Situ CO2 Foam: An Improved Oil Recovery Approach
    Halari, Darshan
    Yadav, Shivam
    Kesarwani, Himanshu
    Saxena, Amit
    Sharma, Shivanjali
    ENERGY & FUELS, 2024, 38 (05) : 3622 - 3634
  • [39] Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic-Anionic Surfactant for Enhanced Oil Recovery
    Luan, Huoxin
    Zhou, Zhaohui
    Xu, Chongjun
    Bai, Lei
    Wang, Xiaoguang
    Han, Lu
    Zhang, Qun
    Li, Gen
    ENERGIES, 2022, 15 (03)
  • [40] Optimized foam-assisted CO2 enhanced oil recovery technology in tight oil reservoirs
    Zhang, Kaiqiang
    Li, Songyan
    Liu, Lirong
    FUEL, 2020, 267