Global regularity of 3D rotating Navier-Stokes equations for resonant domains

被引:30
作者
Babin, A [1 ]
Mahalov, A
Nicolaenko, B
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
three-dimensional Navier-Strokes equations; resonances; rotation;
D O I
10.1016/S0893-9659(99)00208-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence on infinite time intervals of regular solutions to the 3D rotating Navier-Stokes equations in the limit of strong rotation (large Coriolis parameter Omega). This uniform existence is proven for periodic or stress-free boundary conditions for ail domain aspect ratios; including the case of three wave resonances which yield nonlinear " 21/2-dimensional" limit equations; smoothness assumptions are the same as for local existence theorems; The global existence is proven using techniques of the Littlewood-Paley dyadic decomposition. Infinite time regularity for solutions of the 3D rotating Navier-Stokes equations is obtained by bootstrapping from global regularity of the limit equations and convergence theorems. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 17 条
[1]  
Arnold VI, 1998, ORDINARY DIFFERENTIA
[2]  
ARNOLD VI, 1997, APPL MATH SCI, V12
[3]  
Arnold VI., 1965, Trans. Am. Math. Soc. 2nd Ser, V46, P213, DOI [10.1007/BF00275153, 10.1090/trans2/046/11]
[4]  
Avrin J., 1999, APPL ANAL, V71, P197
[5]  
Babin A, 1997, ASYMPTOTIC ANAL, V15, P103
[6]  
Babin A, 1996, EUR J MECH B-FLUID, V15, P291
[7]  
BABIN A, 1995, STRUCTURE DYNAMICS N, V145
[8]  
Babin A.V., 1992, ATTRACTORS EVOLUTION
[9]  
Babin AV, 1996, RUSS J MATH PHYS, V4, P417
[10]  
Constantin P., 1988, Chicago Lectures in Mathematics, DOI DOI 10.7208/CHICAGO/9780226764320.001.0001