Manifold regularized stacked denoising autoencoders with feature selection

被引:13
|
作者
Yu, Jianbo [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 200084, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep neural network; Stacked denoising autoencoders; Manifold regularization; Feature selection; Particle swarm optimization; PARTICLE SWARM OPTIMIZATION; LOCAL DEEP-FEATURE; NEURAL-NETWORK; IMPROVED PSO; ALGORITHM; RECOGNITION; PREDICTION; EVOLUTION; ENSEMBLE;
D O I
10.1016/j.neucom.2019.05.050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new stacked denoising autoencoders (SDAE), called manifold regularized SDAE (MRSDAE) based on particle swarm optimization (PSO), where manifold regularization and feature selection are embedded in the deep network. This study concentrates on using PSO to simultaneously optimize structure and parameters of SDAEs through a specific particle representation and learning method. MRSDAE aims to generate discriminant features from the data based on the integration of these effective techniques, i.e., structure and parameter optimization, manifold regularization and feature selection. The experimental results on a number of benchmark classification datasets demonstrate that MRSDAE can construct compact SDAEs with high generalization performance. Finding from this study can be used as effective guideline in learning both the structure and parameters of deep neural networks (DNNs) with manifold regularization and feature selection techniques. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 50 条
  • [41] Gender Identification Using Marginalised Stacked Denoising Autoencoders on Twitter Data
    Al-onazi, Badriyya B.
    Nour, Mohamed K.
    Alshamrani, Hassan
    Al Duhayyim, Mesfer
    Mohsen, Heba
    Abdelmageed, Amgad Atta
    Mohammed, Gouse Pasha
    Zamani, Abu Sarwar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 2529 - 2544
  • [42] Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA)
    Gorgel, Pelin
    Simsek, Ahmet
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 355 : 325 - 342
  • [43] Hybrid Collaborative Filtering with Semi-Stacked Denoising Autoencoders for Recommendation
    Zou, Hairui
    Chen, Chaoxian
    Zhao, Changjian
    Yang, Bo
    Kang, Zhongfeng
    IEEE 17TH INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP / IEEE 17TH INT CONF ON PERVAS INTELLIGENCE AND COMP / IEEE 5TH INT CONF ON CLOUD AND BIG DATA COMP / IEEE 4TH CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2019, : 87 - 93
  • [44] Short-Term Electricity Price Forecasting With Stacked Denoising Autoencoders
    Wang, Long
    Zhang, Zijun
    Chen, Jieqiu
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) : 2673 - 2681
  • [45] A Self-adaptive Learning Rate Principle for Stacked Denoising Autoencoders
    HAO Qianqian
    DING Jinkou
    WANG Jianfei
    软件, 2015, (09) : 82 - 86
  • [46] Clustering Mixed Data Based on Density Peaks and Stacked Denoising Autoencoders
    Duan, Baobin
    Han, Lixin
    Gou, Zhinan
    Yang, Yi
    Chen, Shuangshuang
    SYMMETRY-BASEL, 2019, 11 (02):
  • [47] Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders
    Alshathri, Samah Ibrahim
    Vincent, Desiree Juby
    Hari, V. S.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 1371 - 1386
  • [48] On Latent Fingerprint Minutiae Extraction using Stacked Denoising Sparse AutoEncoders
    Sankaran, Anush
    Pandey, Prateekshit
    Vatsa, Mayank
    Singh, Richa
    2014 IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2014), 2014,
  • [49] Static Hand Gesture Recognition using Stacked Denoising Sparse Autoencoders
    Kumar, Varun
    Nandi, G. C.
    Kala, Rahul
    2014 SEVENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2014, : 99 - 104
  • [50] Source-Target-Source Classification Using Stacked Denoising Autoencoders
    Kandaswamy, Chetak
    Silva, Luis M.
    Cardoso, Jaime S.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2015), 2015, 9117 : 39 - 47