Manifold regularized stacked denoising autoencoders with feature selection

被引:13
|
作者
Yu, Jianbo [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 200084, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep neural network; Stacked denoising autoencoders; Manifold regularization; Feature selection; Particle swarm optimization; PARTICLE SWARM OPTIMIZATION; LOCAL DEEP-FEATURE; NEURAL-NETWORK; IMPROVED PSO; ALGORITHM; RECOGNITION; PREDICTION; EVOLUTION; ENSEMBLE;
D O I
10.1016/j.neucom.2019.05.050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new stacked denoising autoencoders (SDAE), called manifold regularized SDAE (MRSDAE) based on particle swarm optimization (PSO), where manifold regularization and feature selection are embedded in the deep network. This study concentrates on using PSO to simultaneously optimize structure and parameters of SDAEs through a specific particle representation and learning method. MRSDAE aims to generate discriminant features from the data based on the integration of these effective techniques, i.e., structure and parameter optimization, manifold regularization and feature selection. The experimental results on a number of benchmark classification datasets demonstrate that MRSDAE can construct compact SDAEs with high generalization performance. Finding from this study can be used as effective guideline in learning both the structure and parameters of deep neural networks (DNNs) with manifold regularization and feature selection techniques. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 50 条
  • [21] A primitive study of voxel feature generation by multiple stacked denoising autoencoders for detecting cerebral aneurysms on MRA
    Nemoto, Mitsutaka
    Hayashi, Naoto
    Hanaoka, Shouhei
    Nomura, Yukihiro
    Miki, Soichiro
    Yoshikawa, Takeharu
    Ohtomo, Kuni
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [22] Dynamic Feature Acquisition Using Denoising Autoencoders
    Kachuee, Mohammad
    Darabi, Sajad
    Moatamed, Babak
    Sarrafzadeh, Majid
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (08) : 2252 - 2262
  • [23] Manifold regularized multi-view feature selection for social image annotation
    Li, Yangxi
    Shi, Xin
    Du, Cuilan
    Liu, Yang
    Wen, Yonggang
    NEUROCOMPUTING, 2016, 204 : 135 - 141
  • [24] Feature Selection using Autoencoders
    Tomar, Dhananjay
    Prasad, Yamuna
    Thakur, Manish K.
    Biswas, K. K.
    2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA SCIENCE (MLDS 2017), 2017, : 56 - 60
  • [25] Monitoring Acute Lymphoblastic Leukemia Therapy with Stacked Denoising Autoencoders
    Scheithe, Jakob
    Licandro, Roxane
    Rota, Paolo
    Reiter, Michael
    Diem, Markus
    Kampel, Martin
    COMPUTER AIDED INTERVENTION AND DIAGNOSTICS IN CLINICAL AND MEDICAL IMAGES, 2019, 31 : 189 - 197
  • [26] Fractal Autoencoders for Feature Selection
    Wu, Xinxing
    Cheng, Qiang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10370 - 10378
  • [27] Fault Detection for Ironmaking Process Based on Stacked Denoising Autoencoders
    Zhang, Tongshuai
    Wang, Wei
    Ye, Hao
    Huang, DeXian
    Zhang, Haifeng
    Li, Mingliang
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 3261 - 3267
  • [28] Monitoring of complex profiles based on deep stacked denoising autoencoders
    Chen, Shumei
    Yu, Jianbo
    Wang, Shijin
    COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 143 (143)
  • [29] Improving Transfer Learning Accuracy by Reusing Stacked Denoising Autoencoders
    Kandaswamy, Chetak
    Silva, Luis M.
    Alexandre, Luis A.
    Sousa, Ricardo
    Santos, Jorge M.
    de Sa, Joaquim Marques
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 1380 - 1387
  • [30] Modulation classification for cognitive radios using stacked denoising autoencoders
    Zhu, Xu
    Fujii, Takeo
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2017, 35 (05) : 517 - 531