A wave equation with structural damping and nonlinear memory

被引:22
作者
D'Abbicco, Marcello [1 ]
机构
[1] Univ Bari, Dept Math, I-70125 Bari, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2014年 / 21卷 / 05期
关键词
Semilinear equations; Global existence; Nonlinear memory; Structural damping; Critical exponent; MAXIMUM PRINCIPLE; CRITICAL EXPONENT; GLOBAL EXISTENCE; L-P; DECAY;
D O I
10.1007/s00030-014-0265-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the critical exponent for a wave equation with structural damping and nonlinear memory: where mu > 0. In the supercritical case, we prove the existence of small data global solutions, whereas, in the subcritical case, we prove the nonexistence of global solutions for suitable arbitrarily small data, in the special case mu = 2.
引用
收藏
页码:751 / 773
页数:23
相关论文
共 29 条
[21]  
Lucente S., 1999, REND MAT ACC LINCE 9, V9, P173
[22]   Lp-Lq estimates for damped wave equations and their applications to semi-linear problem [J].
Narazaki, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (02) :585-626
[23]   L1 Estimates for Oscillating Integrals Related to Structural Damped Wave Models [J].
Narazaki, Takashi ;
Reissig, Michael .
STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 :215-258
[24]  
Podlubny I., MATH SCI ENG, V198
[25]  
Reissig M, 2011, CONTEMP MATH, V554, P187
[26]  
Samko SG., 1987, Fractional Integrals and Derivatives, Theory and Applications
[27]  
Shibata Y, 2000, MATH METHOD APPL SCI, V23, P203, DOI 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO
[28]  
2-M
[29]   Critical exponent for a nonlinear wave equation with damping [J].
Todorova, G ;
Yordanov, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (02) :464-489