Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice

被引:54
|
作者
Jiang, Xianlei [1 ]
Xing, Xupeng [1 ]
Zhang, Yingbing [1 ]
Zhang, Chengtu [2 ]
Wu, Ying [2 ]
Chen, Yongzhong [2 ]
Meng, Ru [2 ]
Jia, Huiqun [1 ]
Cheng, Yuyao [1 ]
Zhang, Yong [1 ]
Su, Jianmin [1 ]
机构
[1] Northwest A&F Univ, Coll Vet Med, Yangling 712100, Shaanxi, Peoples R China
[2] Xining Anim Husb & Vet Stn, Xining 810003, Qinghai, Peoples R China
基金
国家重点研发计划;
关键词
Lead; Oocyte; Ovary; Oxidative stress; Nrf2/Keap1; HEAVY-METALS; SIGNALING PATHWAY; IN-VIVO; CATTLE; TOXICITY; TRANSCRIPTION; ASSOCIATION; POLLUTION; INDUSTRY; CYSTEINE;
D O I
10.1016/j.ecoenv.2020.111231
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lead, a common metallic contaminant, is widespread in the living environment, and has deleterious effects on the reproductive systems of humans and animals. Although numerous toxic effects of lead have been reported, the effects and underlying mechanisms of the impacts of lead exposure on the female reproductive system, especially oocyte maturation and fertility, remain unknown. In this study, mice were treated by gavage for seven days to evaluate the reproductive damage and role of Nrf2-mediated defense responses during lead exposure. Lead exposure significantly reduced the maturation and fertilization of oocytes in vivo. Additionally, lead exposure triggered oxidative stress with a decreased glutathione level, increased amount of reactive oxygen species, and abnormal mitochondrial distribution. Moreover, lead exposure caused histopathological and ul-trastructural changes in oocytes and ovaries, along with decreases in the activities of catalase, glutathione peroxidase, total superoxide dismutase, and glutathione-S transferase, and increases in the levels of malonaldehyde in mouse ovaries. Further experiments demonstrated that lead exposure activated the Nrf2 signaling pathway to protect oocytes against oxidative stress by enhancing the transcription levels of antioxidant enzymes. In conclusion, our study demonstrates that lead activates the Nrf2/Keap1 pathway and impairs oocyte maturation and fertilization by inducing oxidative stress, leading to a decrease in the fertility of female mice.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection
    Chi, Fuyun
    Cheng, Chuanjing
    Zhang, Man
    Su, Bo
    Hou, Yuanyuan
    Bai, Gang
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 332
  • [42] IL-17 enhances oxidative stress in hepatocytes through Nrf2/keap1 signal pathway activation
    Xu, Xiaoheng
    Zhang, Sijin
    Song, Xingyu
    Hu, Qibo
    Pan, Wei
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2018, 11 (07): : 3318 - 3323
  • [43] Narirutin ameliorates polystyrene microplastics induced nephrotoxicity by modulating oxidative stress, inflammation and Nrf2/Keap1 pathway
    Ijaz, Muhammad Umar
    Ghaffar, Maria
    Azmat, Rabia
    Batool, Moazama
    Khan, Hammad Ahmed
    Hussain, Shaik Althaf
    Riaz, Mian Nadeem
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2024, 36 (08)
  • [44] Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis
    Michalickova, Danica
    Hrncir, Tomas
    Canova, Nikolina Kutinova
    Slanar, Ondrej
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2020, 873
  • [45] Edaravone dexborneol attenuates oxidative stress in experimental subarachnoid hemorrhage via Keap1/Nrf2 signaling pathway
    Zhu, Kunyuan
    Bi, Shijun
    Zhu, Zechao
    Zhang, Wenxu
    Yang, Xinyu
    Li, Jiashuo
    Liang, Guobiao
    Yu, Chunyong
    Pan, Pengyu
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [46] Keap1/Nrf2 signaling pathway participating in the progression of epilepsy via regulation of oxidative stress and ferroptosis in neurons
    Wang, Dandan
    Cui, Yunmei
    Gao, Fan
    Zheng, Weiwei
    Li, Jinzi
    Xian, Zhemin
    CLINICS, 2024, 79
  • [47] Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers
    Tossetta, Giovanni
    Marzioni, Daniela
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2023, 941
  • [48] The Role of the Keap1/Nrf2 Pathway in the Cellular Response to Methylmercury
    Kumagai, Yoshito
    Kanda, Hironori
    Shinkai, Yasuhiro
    Toyama, Takashi
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2013, 2013
  • [49] The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism
    Song, Moon-Young
    Lee, Da-Young
    Chun, Kyung-Soo
    Kim, Eun-Hee
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
  • [50] Cytoprotection of Baicalein Against Oxidative Stress-induced Cardiomyocytes Injury Through the Nrf2/Keap1 Pathway
    Cui, Guozhen
    Luk, Sharon Chui Wah
    Li, Ronald Adolphus
    Chan, Ken Kwok Keung
    Lei, Si Wan
    Wang, Liang
    Shen, Huifang
    Leung, George Pak Heng
    Lee, Simon Ming Yuen
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2015, 65 (01) : 39 - 46