DATA ANALYSIS AND SWE RETRIEVAL OF AIRBORNE SAR DATA AT X BAND AND KU BANDS

被引:1
作者
Borah, Firoz Kanti [1 ]
Tsang, Leung [1 ]
Kang, D. K. [2 ,3 ]
Kim, Edward [3 ]
Siqueira, Paul [4 ]
Barros, Ana [5 ]
Durand, Michael [6 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Radiat Lab, Ann Arbor, MI 48109 USA
[2] Univ Maryland, College Pk, MD 20742 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Univ Massachusetts, Amherst, MA 01003 USA
[5] Univ Illinois, Urbana, IL 61801 USA
[6] Ohio State Univ, Columbus, OH 43210 USA
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Remote sensing; snow water equivalent; bi-continuous media; dense media radiative transfer; SCATTERING;
D O I
10.1109/IGARSS46834.2022.9884965
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Snow water equivalent (SWE) is an important characteristic of a terrestrial hydrological cycle that needs to be retrieved in any global snow satellite mission. Many retrieval algorithms have been proposed based on microwave backscattering of snow packs. And X and Ku bands have been a focus on many of these past and future missions. In this paper we analyse the airborne X(9.6 GHz) and Ku (17.2 GHz) band data of the SnowSAR 2017 campaign and the University of Massachusetts InSAR Ku (13.3 GHz) band data using the bi-continuous dense media radiative transfer (DMRT) model. In-situ measurements of density, temperature and specific surface area (SSA) from the snow pits are used as physical parameters and are used in estimating the numerical parameters <zeta > and b which characterizes the model. The background effects such as rough surface scattering are also removed from the airborne data and only the volume scattering is analyzed. Overcoming limitations in other models such as the sticky sphere model, the bi-continuous media model gives a more realistic representation of snow microstructure and has a weaker frequency dependence.
引用
收藏
页码:4252 / 4255
页数:4
相关论文
共 9 条
[1]   Electromagnetic Scattering by Bicontinuous Random Microstructures With Discrete Permittivities [J].
Ding, Kung-Hau ;
Xu, Xiaolan ;
Tsang, Leung .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (08) :3139-3151
[2]  
Macedo K, 2020, SNOWEX17 SNOWSAR RAW
[3]   AN EMPIRICAL-MODEL AND AN INVERSION TECHNIQUE FOR RADAR SCATTERING FROM BARE SOIL SURFACES [J].
OH, Y ;
SARABANDI, K ;
ULABY, FT .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (02) :370-381
[4]   MULTI-FREQUENCY SAR IMAGES FOR SWE RETRIEVAL IN ALPINE AREAS THROUGH MACHINE LEARNING APPROACHES [J].
Pettinato, S. ;
Paloscia, S. ;
Santi, E. ;
Palchetti, E. ;
De Gregorio, L. ;
Notarnicola, C. ;
Cuozzo, G. ;
Marin, C. ;
Cigna, F. ;
Tapete, D. .
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, :2930-2933
[5]   A KU-BAND AIRBORNE INSAR FOR SNOW CHARACTERIZATION AT TRAIL VALLEY CREEK [J].
Siqueira, Paul ;
Adam, Max ;
Kraatz, Simon ;
Lagoy, Dustin ;
Tarres, Marc Closa ;
Tsang, Leung ;
Zhu, Jiyue ;
Derksen, Chris ;
King, Joshua .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :2146-2149
[6]   Modeling Both Active and Passive Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory With Multiple Scattering and Backscattering Enhancement [J].
Tan, Shurun ;
Chang, Wenmo ;
Tsang, Leung ;
Lemmetyinen, Juha ;
Proksch, Martin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (09) :4418-4430
[7]  
Tsang L., 2000, SCATTERING ELECTROMA
[8]  
Tsang L., 2004, Scattering of Electromagnetic Waves: Advanced Topics, V26
[9]   Forward and Inverse Radar Modeling of Terrestrial Snow Using SnowSAR Data [J].
Zhu, Jiyue ;
Tan, Shurun ;
King, Joshua ;
Derksen, Chris ;
Lemmetyinen, Juha ;
Tsang, Leung .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12) :7122-7132