ON THE SEMI-GLOBAL STABILIZABILITY OF THE KORTEWEG-DE VRIES EQUATION VIA MODEL PREDICTIVE CONTROL

被引:5
作者
Azmi, Behzad [1 ]
Boulanger, Anne-Celine [2 ]
Kunisch, Karl [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[2] Tech Univ Munich, Munich, Germany
基金
奥地利科学基金会;
关键词
Receding horizon control; model predictive control; asymptotic stability; infinite-dimensional systems; EXACT BOUNDARY CONTROLLABILITY; LEGENDRE-PETROV-GALERKIN; BURGERS-EQUATION; FINITE; STABILIZATION; DECAY; 3RD-ORDER;
D O I
10.1051/cocv/2017001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stabilization of the nonlinear Korteweg-de Vries (KdV) equation on a bounded interval by model predictive control (MPG) is investigated. This MPG strategy does not need any terminal cost or terminal constraint to guarantee the stability. The semi-global stabilizability is the key condition. Based on this condition, the suboptimality and exponential stability of the model predictive control are investigated. Finally, numerical experiment is presented which validates the theoretical results.
引用
收藏
页码:237 / 263
页数:27
相关论文
共 57 条
[51]   Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain [J].
Rosier, Lionel ;
Zhang, Bing-Yu .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (03) :927-956
[52]   Control and stabilization of the Korteweg-de Vries equation: recent progresses [J].
Rosier, Lionel ;
Zhang, Bing-Yu .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2009, 22 (04) :647-682
[53]   A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KDV equation [J].
Shen, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (05) :1595-1619
[54]   CONSERVATIVE FINITE-ELEMENT METHOD FOR THE KORTEWEG-DE VRIES EQUATION [J].
WINTHER, R .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :23-43
[55]   A local discontinuous Galerkin method for KdV type equations [J].
Yan, J ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (02) :769-791
[56]   INTERACTION OF SOLITONS IN A COLLISIONLESS PLASMA AND RECURRENCE OF INITIAL STATES [J].
ZABUSKY, NJ ;
KRUSKAL, MD .
PHYSICAL REVIEW LETTERS, 1965, 15 (06) :240-&
[57]   Exact boundary controllability of the Korteweg-de Vries equation [J].
Zhang, BY .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) :543-565