A numerical study of rock scratch tests using the particle-based numerical manifold method

被引:26
作者
Li, Xing [1 ,2 ]
Zhang, Qianbing [2 ]
Li, Jianchun [1 ]
Zhao, Jian [2 ]
机构
[1] Southeast Univ, Sch Civil Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
Numerical manifold method; Rockcutting; Scratch; Ductile-brittle transition; Mechanical specific energy; FAILURE MODE TRANSITION; FRAGMENTATION PROCESS; TBM CUTTERS; SIMULATION; DEPTH; BITS;
D O I
10.1016/j.tust.2018.04.029
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A better understanding of the rock-tool interaction is necessary to improve the cutting efficiency. In this paper, we present a numerical study of rock scratching using a newly developed particle-based numerical manifold method (PNMM). The scratching processes with different cutting depths are first simulated, where the failure pattern and cutting force are discussed. The transition of brittle-ductile failure with an increased cutting depth is reproduced. It is validated that when the cutting depth is intermediate, rock scratching presents a transitional mode between ductile and brittle failure. Then, a parametric study is performed by a series of numerical simulations. The effect of cutter operational parameters on the cutting force and energy consumed by the cutter are studied. Three operational parameters of the cutter are considered in this study, including the cutting depth, cutting speed, and cutter rake angle. An estimation of the transitional cutting depth range is given by the result of the mechanical specific energy of the cutter. Besides, some advice is provided to improve the efficiency of rock cutting in engineering practice.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
  • [21] Modeling rock failure using the numerical manifold method followed by the discontinuous deformation analysis
    Ning, You-Jun
    An, Xin-Mei
    Lu, Qing
    Ma, Guo-Wei
    ACTA MECHANICA SINICA, 2012, 28 (03) : 760 - 773
  • [22] Modeling rock failure using the numerical manifold method followed by the discontinuous deformation analysis
    You-Jun Ning
    Xin-Mei An
    Qing Lü
    Guo-Wei Ma
    Acta Mechanica Sinica, 2012, 28 : 760 - 773
  • [23] Simulation of Deformation Process Failure of Jointed Rock Masses Based on the Numerical Manifold Method
    Lin, Xing-Chao
    Zhang, Qiang
    Jin, Jiufeng
    Chen, Guangming
    Li, Jin-Hang
    FRONTIERS IN PHYSICS, 2022, 9
  • [24] Reformulation of dynamic crack propagation using the numerical manifold method
    Zheng, Hong
    Yang, Yongtao
    Shi, Genhua
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 105 : 279 - 295
  • [25] Numerical manifold method based on the method of weighted residuals
    Li, S
    Cheng, Y
    Wu, YF
    COMPUTATIONAL MECHANICS, 2005, 35 (06) : 470 - 480
  • [26] Numerical manifold method based on the method of weighted residuals
    S. Li
    Y. Cheng
    Y.-F. Wu
    Computational Mechanics, 2005, 35 : 470 - 480
  • [27] Hydraulic fracturing modeling using the enriched numerical manifold method
    Yang, Yongtao
    Tang, Xuhai
    Zheng, Hong
    Liu, Quansheng
    Liu, Zhijun
    APPLIED MATHEMATICAL MODELLING, 2018, 53 : 462 - 486
  • [28] A GPU-based numerical manifold method for modeling the formation of the excavation damaged zone in deep rock tunnels
    Liu, Quanshen
    Xu, Xiangyu
    Wu, Zhijun
    COMPUTERS AND GEOTECHNICS, 2020, 118
  • [29] Application of the numerical manifold method to model progressive failure in rock slopes
    Wong, Louis Ngai Yuen
    Wu, Zhijun
    ENGINEERING FRACTURE MECHANICS, 2014, 119 : 1 - 20
  • [30] Simulation of impact failure of jointed rock mass by numerical manifold method
    Liu Hong-yan
    Wang Gui-he
    ROCK AND SOIL MECHANICS, 2009, 30 (11) : 3523 - 3527