The properties of fractional correlation peak based on fractional Fourier transform

被引:0
作者
Zhu, BH [1 ]
Han, L [1 ]
Xie, HW [1 ]
Liu, ST [1 ]
机构
[1] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China
来源
ICEMI'99: FOURTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1 AND 2, CONFERENCE PROCEEDINGS | 1999年
关键词
classical correlation; fractional Fourier transform; fractional correlation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The influence of the fractional orders of the fractional Fourier transforms (FRT) on the correlation peak properties of fractional correlation (FC) has been analyzed by computer simulation. The optimized fractional orders of FC have been given. We demonstrated that the performances of FC have been improved in correlation peak compared with classical correlation. Therefore the sensitivity of detecting target can be enhanced.
引用
收藏
页码:868 / 872
页数:5
相关论文
共 50 条
  • [41] The fractional Fourier transform and harmonic oscillation
    Kutay, MA
    Ozaktas, HM
    NONLINEAR DYNAMICS, 2002, 29 (1-4) : 157 - 172
  • [42] Angle resolution of fractional Fourier transform
    Zhang, Feng
    Tao, Ran
    Wang, Yue
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [43] An Optical Fractional Fourier Transform System
    CHEN Jian nong Department of Physics
    Journal of Shanghai University, 2000, (04) : 292 - 294
  • [44] Speckle photography and the fractional Fourier transform
    Patten, R
    Sheridan, JT
    Larkin, A
    OPTICAL ENGINEERING, 2001, 40 (08) : 1438 - 1440
  • [45] Comprehensive Survey on Fractional Fourier Transform
    Zhang, Yudong
    Wang, Shuihua
    Yang, Jian-Fei
    Zhang, Zheng
    Phillips, Preetha
    Sun, Ping
    Yan, Jie
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 1 - 48
  • [46] Fractional Fourier transform and geometric quantization
    Chmielowiec, Witold
    Kijowski, Jerzy
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (06) : 1433 - 1450
  • [47] Fractional Fourier transform of generalized functions
    Zayed, AI
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) : 299 - 312
  • [48] Fractional Fourier transform of Lorentz beams
    周国泉
    ChinesePhysicsB, 2009, 18 (07) : 2779 - 2784
  • [49] Fractional Fourier transform of Lorentz beams
    Zhou Guo-Quan
    CHINESE PHYSICS B, 2009, 18 (07) : 2779 - 2784
  • [50] A sparse approximation for fractional Fourier transform
    Yang, Fang
    Chen, Jiecheng
    Qian, Tao
    Zhao, Jiman
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)