Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension

被引:87
作者
Bouboulis, P.
Dalla, Leoni
Drakopoulos, V. [1 ]
机构
[1] Univ Athens, Dept Informat & Telecommun, Athens 15784, Greece
[2] Univ Athens, Dept Math, Athens 15784, Greece
关键词
fractal interpolation functions; IFS; RIFS; fractals; bivariate fractal interpolation surfaces; box-counting dimension; Minkowski dimension;
D O I
10.1016/j.jat.2006.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recurrent bivariate fractal interpolation surfaces (RBFISs) generalise the notion of affine fractal interpolation surfaces (FISs) in that the iterated system of transformations used to construct such a surface is non-affine. The resulting limit surface is therefore no longer self-affine nor self-similar. Exact values for the box-counting dimension of the RBFISs are obtained. Finally, a methodology to approximate any natural surface using RBFISs is outlined. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 24 条
[1]  
Barnsley M.F., 1993, Fractals everywhere
[2]   RECURRENT ITERATED FUNCTION SYSTEMS [J].
BARNSLEY, MF ;
ELTON, JH ;
HARDIN, DP .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :3-31
[3]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[4]  
BOUBOULIS P, 2006, IN PRESS INT J BIFUR
[5]   Bivariate fractal interpolation functions on grids [J].
Dalla, L .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) :53-58
[6]  
Gantmacher F.R., 2000, MATRIX THEORY, V2
[7]   FRACTAL INTERPOLATION SURFACES AND A RELATED 2-D MULTIRESOLUTION ANALYSIS [J].
GERONIMO, JS ;
HARDIN, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 176 (02) :561-586
[8]  
KARLIN S, 1974, 1 COURSE STOCHASTIC
[9]   The Minkowski dimension of the bivariate fractal interpolation surfaces [J].
Malysz, R .
CHAOS SOLITONS & FRACTALS, 2006, 27 (05) :1147-1156
[10]   FRACTAL CHARACTER OF FRACTURE SURFACES OF METALS [J].
MANDELBROT, BB ;
PASSOJA, DE ;
PAULLAY, AJ .
NATURE, 1984, 308 (5961) :721-722