Scattering profile for global solutions of the energy-critical wave equation

被引:17
作者
Duyckaerts, Thomas [1 ]
Kenig, Carlos [2 ]
Merle, Frank [3 ]
机构
[1] Univ Paris 13, LAGA, Sorbonne Paris Cite, UMR 7539, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Univ Chicago, 5734 Univ Ave, Chicago, IL 60637 USA
[3] IHES, Cergy Pontoise UMR 8088, 2 Av Adolphe Chauvin, F-95302 Cergy Pontoise, France
基金
欧洲研究理事会;
关键词
Wave equation; critical nonlinearity; global solution; radiation term; STRICHARTZ INEQUALITIES; RADIAL SOLUTIONS; BLOW-UP; REGULARITY; ATTRACTOR;
D O I
10.4171/JEMS/882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the focusing energy-critical wave equation in space dimension 3, 4 or 5. We prove that any global solution which is bounded in the energy space converges in the exterior of wave cones to a radiation term which is a solution of the linear wave equation.
引用
收藏
页码:2117 / 2162
页数:46
相关论文
共 50 条
[41]   Dynamics for the focusing, energy-critical nonlinear Hartree equation [J].
Miao, Changxing ;
Wu, Yifei ;
Xu, Guixiang .
FORUM MATHEMATICUM, 2015, 27 (01) :373-447
[42]   ENERGY DISTRIBUTION OF RADIAL SOLUTIONS TO ENERGY SUBCRITICAL WAVE EQUATION WITH AN APPLICATION ON SCATTERING THEORY [J].
Shen, Ruipeng .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) :3827-3857
[43]   Construction of excited multi-solitons for the 5D energy-critical wave equation [J].
Yuan, Xu .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2021, 18 (02) :397-434
[44]   GLOBAL INFINITE ENERGY SOLUTIONS FOR THE CUBIC WAVE EQUATION [J].
Burq, Nicolas ;
Thomann, Laurent ;
Tzvetkov, Nikolay .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (02) :301-313
[45]   Sharp criteria of blow-up for the energy-critical nonlinear wave equation with a damping term [J].
Qing, Jun .
APPLICABLE ANALYSIS, 2021, 100 (16) :3383-3390
[46]   Dynamics of subcritical threshold solutions for energy-critical NLS [J].
Su, Qingtang ;
Zhao, Zehua .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 20 (01) :37-72
[47]   SCATTERING OF THE FOCUSING ENERGY-CRITICAL NLS WITH INVERSE SQUARE POTENTIAL IN THE RADIAL CASE [J].
Yang, Kai .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) :77-99
[48]   The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrodinger equation [J].
Lee, Yoonjung ;
Seo, Ihyeok .
ARCHIV DER MATHEMATIK, 2021, 117 (04) :441-453
[49]   The Cauchy problem of a focusing energy-critical nonlinear Schrodinger equation [J].
Huang, Juan ;
Zhang, Jian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 80 :122-134
[50]   Energy-critical scattering for focusing inhomogeneous coupled Schrodinger systems [J].
Ghanmi, Radhia ;
Saanouni, Tarek .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) :9109-9136