Scattering profile for global solutions of the energy-critical wave equation

被引:16
作者
Duyckaerts, Thomas [1 ]
Kenig, Carlos [2 ]
Merle, Frank [3 ]
机构
[1] Univ Paris 13, LAGA, Sorbonne Paris Cite, UMR 7539, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Univ Chicago, 5734 Univ Ave, Chicago, IL 60637 USA
[3] IHES, Cergy Pontoise UMR 8088, 2 Av Adolphe Chauvin, F-95302 Cergy Pontoise, France
基金
欧洲研究理事会;
关键词
Wave equation; critical nonlinearity; global solution; radiation term; STRICHARTZ INEQUALITIES; RADIAL SOLUTIONS; BLOW-UP; REGULARITY; ATTRACTOR;
D O I
10.4171/JEMS/882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the focusing energy-critical wave equation in space dimension 3, 4 or 5. We prove that any global solution which is bounded in the energy space converges in the exterior of wave cones to a radiation term which is a solution of the linear wave equation.
引用
收藏
页码:2117 / 2162
页数:46
相关论文
共 29 条
[11]   Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case [J].
Duyckaerts, Thomas ;
Kenig, Carlos ;
Merle, Frank .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (05) :1389-1454
[12]   RADIATION-FIELDS AND HYPERBOLIC SCATTERING-THEORY [J].
FRIEDLANDER, FG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 88 (NOV) :483-515
[13]   RADIATION FIELD OF PULSE SOLUTIONS OF WAVE EQUATION [J].
FRIEDLANDER, FG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 269 (1336) :53-&
[14]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[15]   THE GLOBAL CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR-WAVE EQUATION [J].
GINIBRE, J ;
SOFFER, A ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (01) :96-130
[16]   REGULARITY AND ASYMPTOTIC-BEHAVIOR OF THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
ANNALS OF MATHEMATICS, 1990, 132 (03) :485-509
[17]   REGULARITY FOR THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (06) :749-774
[18]   Long Time Dynamics of Defocusing Energy Critical 3+1 Dimensional Wave Equation with Potential in the Radial Case [J].
Jia, Hao ;
Liu, Baoping ;
Xu, Guixiang .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (02) :353-384
[19]  
Kapitanski L, 1994, MATH RES LETT, V1, P211
[20]   Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation [J].
Kenig, Carlos E. ;
Merle, Frank .
ACTA MATHEMATICA, 2008, 201 (02) :147-212