flowCore: a Bioconductor package for high throughput flow cytometry

被引:389
作者
Hahne, Florian [1 ]
LeMeur, Nolwenn [1 ,2 ]
Brinkman, Ryan R. [3 ]
Ellis, Byron [4 ]
Haaland, Perry [5 ]
Sarkar, Deepayan [1 ]
Spidlen, Josef [3 ]
Strain, Errol [5 ]
Gentleman, Robert [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Dept Life Sci, Computat Biol Program, Div Publ Hlth Sci, Seattle, WA 98109 USA
[2] Univ Rennes 1, IRISA Symbiose, INSERM, EA SeRAIC, F-35042 Rennes, France
[3] British Columbia Canc Res Ctr, Terry Fox Lab, Vancouver, BC V5Z 1L3, Canada
[4] AdBrite Inc, San Francisco, CA 94103 USA
[5] BD Biosci, Res Triangle Pk, NC 27709 USA
来源
BMC BIOINFORMATICS | 2009年 / 10卷
基金
美国国家卫生研究院;
关键词
BIOINFORMATICS;
D O I
10.1186/1471-2105-10-106
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Recent advances in automation technologies have enabled the use of flow cytometry for high throughput screening, generating large complex data sets often in clinical trials or drug discovery settings. However, data management and data analysis methods have not advanced sufficiently far from the initial small-scale studies to support modeling in the presence of multiple covariates. Results: We developed a set of flexible open source computational tools in the R package flowCore to facilitate the analysis of these complex data. A key component of which is having suitable data structures that support the application of similar operations to a collection of samples or a clinical cohort. In addition, our software constitutes a shared and extensible research platform that enables collaboration between bioinformaticians, computer scientists, statisticians, biologists and clinicians. This platform will foster the development of novel analytic methods for flow cytometry. Conclusion: The software has been applied in the analysis of various data sets and its data structures have proven to be highly efficient in capturing and organizing the analytic work flow. Finally, a number of additional Bioconductor packages successfully build on the infrastructure provided by flowCore, open new avenues for flow data analysis.
引用
收藏
页数:8
相关论文
共 17 条
[1]   Phenotype and Function of Human T Lymphocyte Subsets: Consensus and Issues [J].
Appay, Victor ;
van Lier, Rene A. W. ;
Sallusto, Federica ;
Roederer, Mario .
CYTOMETRY PART A, 2008, 73A (11) :975-983
[2]   High-content flow cytometry and temporal data analysis for defining a cellular signature graft-versus-host disease [J].
Brinkman, Ryan Remy ;
Gasparetto, Maura ;
Lee, Shang-Jung Jessica ;
Ribickas, Albert J. ;
Perkins, Janelle ;
Janssen, William ;
Smiley, Renee ;
Smith, Clay .
BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2007, 13 (06) :691-700
[3]   Feature significance for multivariate kernel density estimation [J].
Duong, Tam ;
Cowling, Arianna ;
Koch, Inge ;
Wand, M. P. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (09) :4225-4242
[4]   Identification of compounds that enhance the anti-lymphoma activity of rituximab using flow cytometric high-content screening [J].
Gasparetto, M ;
Gentry, T ;
Sebti, S ;
O'Bryan, E ;
Nimmanapalli, R ;
Blaskovich, MA ;
Bhalla, K ;
Rizzieri, D ;
Haaland, P ;
Dunne, J ;
Smith, C .
JOURNAL OF IMMUNOLOGICAL METHODS, 2004, 292 (1-2) :59-71
[5]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[6]   Flow Cytometry analyses and bioinformatics: Interest in new softwares to optimize novel technologies and to favor the emergence of innovative concepts in cell research [J].
Lizard, Gerard .
CYTOMETRY PART A, 2007, 71A (09) :646-647
[7]   Automated Gating of flow cytometry data via robust model-based clustering [J].
Lo, Kenneth ;
Brinkman, Ryan Remy ;
Gottardo, Raphael .
CYTOMETRY PART A, 2008, 73A (04) :321-332
[8]   Standardization of cytokine flow cytometry assays [J].
Maecker, HT ;
Rinfret, A ;
D'Souza, P ;
Darden, J ;
Roig, E ;
Landry, C ;
Hayes, P ;
Birungi, J ;
Anzala, O ;
Garcia, M ;
Harari, A ;
Frank, I ;
Baydo, R ;
Baker, M ;
Holbrook, J ;
Ottinger, J ;
Lamoreaux, L ;
Epling, CL ;
Sinclair, E ;
Suni, MA ;
Punt, K ;
Calarota, S ;
El-Bahi, S ;
Alter, G ;
Maila, H ;
Kuta, E ;
Cox, J ;
Gray, C ;
Altfeld, M ;
Nougarede, N ;
Boyer, J ;
Tussey, L ;
Tobery, T ;
Bredt, B ;
Roederer, M ;
Koup, R ;
Maino, VC ;
Weinhold, K ;
Pantaleo, G ;
Gilmour, J ;
Horton, H ;
Sekaly, RP .
BMC IMMUNOLOGY, 2005, 6 (1)
[9]   Optimizing a multicolor immunophenotyping assay [J].
Mahnke, Yolanda D. ;
Roederer, Mario .
CLINICS IN LABORATORY MEDICINE, 2007, 27 (03) :469-+
[10]   A new "Logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data [J].
Parks, David R. ;
Roederer, Mario ;
Moore, Wayne A. .
CYTOMETRY PART A, 2006, 69A (06) :541-551