The Zero Surface Tension Limit of Three-dimensional Water Waves

被引:70
作者
Ambrose, David M. [1 ]
Masmoudi, Nader [2 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
BOUNDARY INTEGRAL METHOD; INCOMPRESSIBLE IDEAL FLUID; WELL-POSEDNESS; EULER-EQUATIONS; VORTEX SHEETS; SOBOLEV SPACES; 3-D; CONVERGENCE; MOTION; FLOW;
D O I
10.1512/iumj.2009.58.3450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish that the limit of the water wave with surface tension, as surface tension vanishes, is the water wave without surface tension. The main tool is an energy estimate which is uniform in the surface tension parameter. Before establishing estimates, we reformulate the problem using suitable variables and an isothermal parameterization. With these variables and parameterizations, estimates for the water wave with or without surface tension are straightforward. In particular, this provides a new proof of existence of irrotational water waves in three space dimensions.
引用
收藏
页码:479 / 521
页数:43
相关论文
共 25 条
[1]  
Ambrose DM, 2007, COMMUN MATH SCI, V5, P391
[2]   The zero surface tension limit of two-dimensional water waves [J].
Ambrose, DM ;
Masmoudi, N .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1287-1315
[3]   Well-posedness of vortex sheets with surface tension [J].
Ambrose, DM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) :211-244
[4]   GENERALIZED VORTEX METHODS FOR FREE-SURFACE FLOW PROBLEMS [J].
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1982, 123 (OCT) :477-501
[5]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[6]  
Beale JT, 2001, MATH COMPUT, V70, P977, DOI 10.1090/S0025-5718-00-01218-7
[7]   Convergence of a boundary integral method for water waves [J].
Beale, JT ;
Hou, TY ;
Lowengrub, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) :1797-1843
[8]  
Caflisch R. E., 1992, Transport Theory and Statistical Physics, V21, P559, DOI 10.1080/00411459208203798
[9]   Well-posedness of the free-surface incompressible Euler equations with or without surface tension [J].
Coutand, Daniel ;
Shkoller, Steve .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :829-930
[10]   AN EXISTENCE THEORY FOR WATER-WAVES AND THE BOUSSINESQ AND KORTEWEG-DEVRIES SCALING LIMITS [J].
CRAIG, W .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (08) :787-1003