Non-ergodicity criteria for denumerable continuous time Markov processes

被引:14
作者
Choi, BD [1 ]
Kim, B [1 ]
机构
[1] Korea Univ, Dept Math, Telecommun Math Res Ctr, Seoul 136701, South Korea
关键词
non-ergodicity; ergodicity; test function; Markov process; queueing theory;
D O I
10.1016/j.orl.2004.03.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We provide non-ergodicity criteria for denumerable continuous time Markov processes in terms of test functions. Two examples are given where the non-ergodicity criteria are applied. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:574 / 580
页数:7
相关论文
共 15 条
[1]  
Anderson W. J., 1991, CONTINUOUS TIME MARK
[2]  
DIAMOND J, 1998, COMM STAT STOCHASTIC, V14, P1151
[3]  
Falin G.I., 1997, RETRIAL QUEUES
[5]   A matrix continued fraction algorithm for the multiserver repeated order queue [J].
Hanschke, T .
MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (3-4) :159-170
[6]   Ergodicity of the BMAP/PH/s/s+K retrial queue with PH-retrial times [J].
He, QM ;
Li, H ;
Zhao, YQ .
QUEUEING SYSTEMS, 2000, 35 (1-4) :323-347
[7]   SUFFICIENT CONDITION FOR NONERGODICITY OF A MARKOV-CHAIN [J].
KAPLAN, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (04) :470-471
[8]  
Neuts M.F., 1989, Structured stochastic matrices of M/G/1 type and their applications
[9]  
Neuts Marcel F., 1994, MATRIX GEOMETRIC SOL
[10]   SOME CONDITIONS FOR ERGODICITY AND RECURRENCE OF MARKOV CHAINS [J].
PAKES, AG .
OPERATIONS RESEARCH, 1969, 17 (06) :1058-&