Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer

被引:84
|
作者
Badrinarayanan, Rajagopalan [1 ]
Zhao, Jiyun [1 ]
Tseng, K. J. [1 ]
Skyllas-Kazacos, Maria [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, EXQUISITUS, Ctr E City, Singapore 639798, Singapore
[2] Univ New S Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
基金
新加坡国家研究基金会;
关键词
Energy storage; Vanadium redox flow battery; Capacity loss model; Temperature dependence; Bulk electrolyte transfer; Battery efficiency; EXCHANGE MEMBRANES; CAPACITY LOSS; TRANSPORT; PERFORMANCE; BEHAVIOR; SYSTEM;
D O I
10.1016/j.jpowsour.2014.07.128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As with all redox flow batteries, the Vanadium Redox flow Battery (VRB) can suffer from capacity loss as the vanadium ions diffuse at different rates leading to a build-up on one half-cell and dilution on the other. In this paper an extended dynamic model of the vanadium ion transfer is developed including the effect of temperature and bulk electrolyte transfer. The model is used to simulate capacity decay for a range of different ion exchange membranes that are being used in the VRB. The simulations show that Selemion CMV and Nafion 115 membranes have similar behavior where the impact of temperature on capacity loss is highest within the first 100 cycles. The results for Selemion AMV membrane however are seen to be very different where the capacity loss at different temperatures observed to increase linearly with increasing charging/discharging cycles. The model is made more comprehensive by including the effect of bulk electrolyte transfer. A volume change of 19% is observed in each half-cell for Nafion 115 membrane based on the simulation parameters. The effect of this change in volume directly affects concentration, and the characteristics are analyzed for each vanadium species as well as the overall concentration in the half-cells. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:576 / 586
页数:11
相关论文
共 50 条
  • [1] Electrolyte for All-Vanadium Redox Flow Battery
    Wang Gang
    Chen Jinwei
    Wang Xueqin
    Tian Jing
    Liu Xiaojiang
    Wang Ruilin
    PROGRESS IN CHEMISTRY, 2013, 25 (07) : 1102 - 1112
  • [2] An enhancement to Vynnycky's model for the all-vanadium redox flow battery
    Chen, Ching Liang
    Yeoh, Hak Koon
    Chakrabarti, Mohammed Harun
    ELECTROCHIMICA ACTA, 2014, 120 : 167 - 179
  • [3] Mathematical Model to Study Vanadium Ion Crossover in an All-Vanadium Redox Flow Battery
    Chou, Yi-Sin
    Yen, Shi-Chern
    Arpornwichanop, Amornchai
    Singh, Bhupendra
    Chen, Yong-Song
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (15) : 5377 - 5387
  • [4] Modeling of an All-Vanadium Redox Flow Battery and Optimization of Flow Rates
    Xiong Binyu
    Zhao Jiyun
    Li Jinbin
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [5] Membranes for All-Vanadium Redox Flow Battery
    Zhang Yaping
    Chen Yan
    Zhou Yuanlin
    He Ping
    PROGRESS IN CHEMISTRY, 2010, 22 (2-3) : 384 - 387
  • [6] Exfoliated Graphene Composite Membrane for the All-Vanadium Redox Flow Battery
    Pahlevaninezhad, Maedeh
    Miller, Elizabeth Esther
    Yang, Lixin
    Prophet, Lauren Sarah
    Singh, Ashutosh
    Storwick, Thomas
    Pahlevani, Majid
    Pope, Michael A.
    Roberts, Edward P. L.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (12) : 6505 - 6517
  • [7] Characteristics of the all-vanadium redox flow battery using ammonium metavanadate electrolyte
    Jung, Bo-Young
    Ryu, Cheol-Hwi
    Hwang, Gab-Jin
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (09) : 2361 - 2367
  • [8] Research progress in preparation of electrolyte for all-vanadium redox flow battery
    Guo, Yun
    Huang, Jie
    Feng, Jun-Kai
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 118 : 33 - 43
  • [9] Review-Preparation and modification of all-vanadium redox flow battery electrolyte for green development
    Wang, Yuhan
    Chen, Pan
    He, Hao
    IONICS, 2025, 31 (01) : 23 - 40
  • [10] Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery
    Shah, A. A.
    Al-Fetlawi, H.
    Walsh, F. C.
    ELECTROCHIMICA ACTA, 2010, 55 (03) : 1125 - 1139