Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides

被引:111
|
作者
Guo, Jia-ling [1 ,3 ]
Zhou, Yue-lang [1 ]
Zhao, Hang [1 ]
Chen, Wen-Yan [2 ]
Chen, Yong-Jun [1 ]
Lin, Shi-Mei [1 ]
机构
[1] Southwest Univ, Coll Anim Sci & Technol, Minist Educ, Key Lab Freshwater Fish Reprod & Dev, Chongqing 400715, Peoples R China
[2] Yongchuan Dist Agr Commiss, Chongqing 402160, Peoples R China
[3] Southwest Univ, Coll Anim Sci & Technol, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
M.salmoides; Lipid level; Growth; Lipid metabolism; Antioxidant capacity; BODY-COMPOSITION; FEED-UTILIZATION; NUTRIENT UTILIZATION; FATTY-ACID; GENE-EXPRESSION; BAGRID CATFISH; SILVER BARB; PROTEIN; PERFORMANCE; RATIO;
D O I
10.1016/j.aquaculture.2019.04.007
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
This study was conducted to evaluate the effect of dietary lipid levels on growth, body composition and liver oxidative stress of largemouth bass, Micropterus salmoides. Fish were fed isonitrogenous (crude protein 45%) practical diets with five lipid levels (3.3%, 8.2%, 13.2%, 18.1% and 23.3%, respectively) for 60 days. The results showed that weight gain (WG) and protein efficiency ratio (PER) were all significantly improved by dietary lipid levels up to 18.1% and then levelled off beyond this level. Both feed intake (FI) and feed conversion ratio (FCR) showed a decreasing trend with dietary lipid increased. Body lipid content, liver lipid content, total n-3 and n-6 PUFA content in muscle, and triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) contents in plasma significantly increased with increasing dietary lipid levels. However, body protein content, and HDL-C/TC and HDL-C/LDL-C values significantly reduced. The carnitine palmitoyltransferase I (CPT-1), lipoprtein lipase (LPL), glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FBPase) activities in liver increased significantly as dietary lipid levels increased, whereas both fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) activities showed the opposite trend. Moreover, higher superoxide dismutase (SOD), catalase (CAT) and oxide synthase (NOS) activities, and nitric oxide (NO) concent in liver were recorded in fish fed diets with 18.1% lipid, while the malondialdehyde (MDA) content in liver increased as dietary lipid levels increased. Results indicated that high dietary lipid level (23.3%) inhibit weight gain and induce oxidative stress, which affect the health status of largemouth bass. Based on WG, a dietary lipid level of 18.42% was optimal for growth performance of juvenile largemouth bass.
引用
收藏
页码:394 / 400
页数:7
相关论文
共 50 条
  • [41] Dietary resistant starch supplementation improves the fish growth, lipid metabolism and intestinal barrier in largemouth bass (Micropterus salmoides) fed high-fat diets
    Zhang, Xindang
    Jiang, Aixia
    An, Shuxia
    Guo, Chongchong
    You, Fu
    Huang, Zhenyi
    Feng, Shikun
    Zhang, Yanmin
    Chang, Xulu
    Yang, Guokun
    Meng, Xiaolin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 306
  • [42] Effects of High Starch and Supplementation of an Olive Extract on the Growth Performance, Hepatic Antioxidant Capacity and Lipid Metabolism of Largemouth Bass (Micropterus salmoides)
    Liang, Xiaofang
    Chen, Pei
    Wu, Xiaoliang
    Xing, Shujuan
    Morais, Sofia
    He, Maolong
    Gu, Xu
    Xue, Min
    ANTIOXIDANTS, 2022, 11 (03)
  • [43] Effects of dietary carbohydrate sources on growth performance, glycogen accumulation, insulin signaling pathway and hepatic glucose metabolism in largemouth bass, Micropterus salmoides
    Li, Songlin
    Sang, Chunyan
    Wang, An
    Zhang, Jiacan
    Chen, Naisong
    AQUACULTURE, 2019, 513
  • [44] Dietary threonine influences antioxidant capacity and immune status in juvenile largemouth bass ( Micropterus salmoides) )
    Yu, Heng
    Ren, Mingchun
    Huang, Dongyu
    Zhang, Lu
    Chen, Xiaoru
    Wang, Yongli
    Liang, Hualiang
    AQUACULTURE REPORTS, 2024, 37
  • [45] High dietary starch impaired growth performance, liver histology and hepatic glucose metabolism of juvenile largemouth bass,Micropterus salmoides
    Zhang, Yanmei
    Xie, Shiwei
    Wei, Hanlin
    Zheng, Lu
    Liu, Zhenlu
    Fang, Haohang
    Xie, Jiajun
    Liao, Shiyu
    Tian, Lixia
    Liu, Yongjian
    Niu, Jin
    AQUACULTURE NUTRITION, 2020, 26 (04) : 1083 - 1095
  • [46] Effects of dietary n-3 LC-PUFA levels on the growth, immunity, and lipid metabolism of freshwater carnivorous teleost largemouth bass (Micropterus salmoides) juveniles
    An, Wenqiang
    Xu, Jianzhao
    Chen, Fang
    Ma, Yongcai
    Su, Zeliang
    Guang, Junfeng
    Su, Ningning
    Zhang, Guangrong
    Xu, Chao
    Li, Yuanyou
    Xie, Dizhi
    AQUACULTURE REPORTS, 2023, 32
  • [47] Effects of tea tree essential oil supplementation in low fish meal diet on growth, lipid metabolism, anti-oxidant capacity and immunity of largemouth bass (Micropterus salmoides)
    Liu, Xin
    Deng, Hanyuan
    Xu, Qiaoqing
    Luo, Kai
    Zhou, Jiang
    Gao, Weihua
    Wang, Zhuoduo
    Zhang, Haitao
    Zhou, Xiaoqiu
    AQUACULTURE REPORTS, 2022, 27
  • [48] Effects of lipid sources and lipid peroxidation on feed intake, growth, and tissue fatty acid compositions of largemouth bass (Micropterus salmoides)
    Biao Yun
    Min Xue
    Jia Wang
    Zhi-ying Fan
    Xiu-Feng Wu
    Yin-Hua Zheng
    Yu-Chang Qin
    Aquaculture International, 2013, 21 : 97 - 110
  • [49] Growth and body composition of juvenile largemouth bass Micropterus salmoides in response to dietary protein and energy levels
    Portz, L
    Cyrino, JEP
    Martino, RC
    AQUACULTURE NUTRITION, 2001, 7 (04) : 247 - 254
  • [50] Dietary berberine alleviates high carbohydrate diet-induced intestinal damages and improves lipid metabolism in largemouth bass (Micropterus salmoides)
    Gong, Yulong
    Lu, Qisheng
    Liu, Yulong
    Xi, Longwei
    Zhang, Zhimin
    Liu, Haokun
    Jin, Junyan
    Yang, Yunxia
    Zhu, Xiaoming
    Xie, Shouqi
    Han, Dong
    FRONTIERS IN NUTRITION, 2022, 9