Feasibility of a magnetic suspension for second generation gravitational wave interferometers

被引:10
作者
Varvella, M
Calloni, E
Di Fiore, L
Milano, L
Arnaud, N
机构
[1] CNRS, IN2P3, LabAccelerateur Lineaire, F-91898 Orsay, France
[2] Univ Paris 11, F-91898 Orsay, France
[3] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, NA, Italy
关键词
gravitational waves; magnetic levitation; suspended interferometer; Virgo superattenuator; control systems;
D O I
10.1016/j.astropartphys.2004.01.002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper deals with the use of a magnetic levitation system as a part of a multi-stage seismic attenuator for gravitational wave interferometric antennas. The proposed configuration uses permanent magnets in attraction to balance the suspended weight, plus a closed loop position control to obtain a stable levitation. The system is analyzed using a MATLAB simulation code to compute the forces exerted by extended magnets. The validity of this model has been tested by a comparison with the experimental data from a levitated suspension prototype. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:325 / 335
页数:11
相关论文
共 50 条
  • [31] Exploring the sensitivity of next generation gravitational wave detectors
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Ackley, K.
    Adams, C.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Allen, B.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arun, K. G.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P. T.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Bartos, I.
    Bassiri, R.
    Batch, J. C.
    Baune, C.
    Bell, A. S.
    Berger, B. K.
    Bergmann, G.
    Berry, C. P. L.
    Betzwieser, J.
    Bhagwat, S.
    Bhandare, R.
    Bilenko, I. A.
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (04)
  • [32] Scattering of gravitational radiation - Second order moments of the wave amplitude
    Macquart, JP
    ASTRONOMY & ASTROPHYSICS, 2004, 422 (03) : 761 - 775
  • [33] Gravitational wave background from sub-luminous GRBs: prospects for second- and third-generation detectors
    Howell, E.
    Regimbau, T.
    Corsi, A.
    Coward, D.
    Burman, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 410 (04) : 2123 - 2136
  • [34] The Gravitational Wave Universe Toolbox II. Constraining the binary black hole population with second and third generation detectors
    Yi, Shu-Xu
    Stoppa, Fiorenzo
    Nelemans, Gijs
    Cator, Eric
    ASTRONOMY & ASTROPHYSICS, 2022, 663
  • [35] Measuring individual masses of binary white dwarfs with space-based gravitational-wave interferometers
    Wolz, Anna
    Yagi, Kent
    Anderson, Nick
    Taylor, Andrew J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (01) : L52 - L56
  • [36] Test mass materials for a new generation of gravitational wave detectors
    Rowan, S
    Byer, RL
    Fejer, MM
    Route, R
    Cagnoli, G
    Crooks, DRM
    Hough, J
    Sneddon, PH
    Winkler, W
    GRAVITATIONAL-WAVE DETECTION, 2003, 4856 : 292 - 297
  • [37] Monolithic Fiber Amplifiers for the Next Generation of Gravitational Wave Detectors
    Hochheim, Sven
    Wellmann, Felix
    Theeg, Thomas
    de Varona, Omar
    Booker, Phillip
    Wessels, Peter
    Steinke, Michael
    Neumann, Joerg
    Kracht, Dietmar
    FIBER LASERS AND GLASS PHOTONICS: MATERIALS THROUGH APPLICATIONS, 2018, 10683
  • [38] Sensitivity studies for third-generation gravitational wave observatories
    Hild, S.
    Abernathy, M.
    Acernese, F.
    Amaro-Seoane, P.
    Andersson, N.
    Arun, K.
    Barone, F.
    Barr, B.
    Barsuglia, M.
    Beker, M.
    Beveridge, N.
    Birindelli, S.
    Bose, S.
    Bosi, L.
    Braccini, S.
    Bradaschia, C.
    Bulik, T.
    Calloni, E.
    Cella, G.
    Mottin, E. Chassande
    Chelkowski, S.
    Chincarini, A.
    Clark, J.
    Coccia, E.
    Colacino, C.
    Colas, J.
    Cumming, A.
    Cunningham, L.
    Cuoco, E.
    Danilishin, S.
    Danzmann, K.
    De Salvo, R.
    Dent, T.
    De Rosa, R.
    Di Fiore, L.
    Di Virgilio, A.
    Doets, M.
    Fafone, V.
    Falferi, P.
    Flaminio, R.
    Franc, J.
    Frasconi, F.
    Freise, A.
    Friedrich, D.
    Fulda, P.
    Gair, J.
    Gemme, G.
    Genin, E.
    Gennai, A.
    Giazotto, A.
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (09)
  • [39] Generalised gravitational wave burst generation with generative adversarial networks
    McGinn, J.
    Messenger, C.
    Williams, M. J.
    Heng, I. S.
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (15)
  • [40] Metrics for next-generation gravitational-wave detectors
    Hall, Evan D.
    Evans, Matthew
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (22)